A $4$-choosable graph that is not $(8:2)$-choosable
Advances in Combinatronics (2019)

Voir la notice de l'article provenant de la source Advances in Combinatronics website

In 1980, Erd\H{o}s, Rubin and Taylor asked whether for all positive integers $a$, $b$, and $m$, every $(a:b)$-choosable graph is also $(am:bm)$-choosable. We provide a negative answer by exhibiting a $4$-choosable graph that is not $(8:2)$-choosable.
Publié le :
@article{ADVC_2019_a0,
     author = {Zden\v{e}k Dvo\v{r}\'ak and Xiaolan Hu and Jean-S\'ebastien Sereni},
     title = {A $4$-choosable graph that is not $(8:2)$-choosable},
     journal = {Advances in Combinatronics},
     publisher = {mathdoc},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADVC_2019_a0/}
}
TY  - JOUR
AU  - Zdeněk Dvořák
AU  - Xiaolan Hu
AU  - Jean-Sébastien Sereni
TI  - A $4$-choosable graph that is not $(8:2)$-choosable
JO  - Advances in Combinatronics
PY  - 2019
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADVC_2019_a0/
LA  - en
ID  - ADVC_2019_a0
ER  - 
%0 Journal Article
%A Zdeněk Dvořák
%A Xiaolan Hu
%A Jean-Sébastien Sereni
%T A $4$-choosable graph that is not $(8:2)$-choosable
%J Advances in Combinatronics
%D 2019
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADVC_2019_a0/
%G en
%F ADVC_2019_a0
Zdeněk Dvořák; Xiaolan Hu; Jean-Sébastien Sereni. A $4$-choosable graph that is not $(8:2)$-choosable. Advances in Combinatronics (2019). http://geodesic.mathdoc.fr/item/ADVC_2019_a0/