A study on dual square free modules
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 267-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $M$ be an $H$-supplemented coatomic module with FIEP. Then we prove that $M$ is dual square free if and only if every maximal submodule of $M$ is fully invariant. Let $M=\bigoplus_{i\in I} M_i$ be a direct sum, such that $M$ is coatomic. Then we prove that $M$ is dual square free if and only if each $M_i$ is dual square free for all $i\in I$ and, $M_i$ and $\bigoplus_{j\neq i}M_j$ are dual orthogonal. Finally we study the endomorphism rings of dual square free modules. Let $M$ be a quasi-projective module. If $\operatorname{End}_R(M)$ is right dual square free, then $M$ is dual square free. In addition, if $M$ is finitely generated, then $\operatorname{End}_R(M)$ is right dual square free whenever $M$ is dual square free. We give several examples illustrating our hypotheses.
Keywords: dual square free module, endoregular module, (finite) internal exchange property.
@article{ADM_2021_32_2_a8,
     author = {M. Medina-B\'arcenas and D. Keskin T\"ut\"unc\"u and Y. Kuratomi},
     title = {A study on dual square free modules},
     journal = {Algebra and discrete mathematics},
     pages = {267--279},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a8/}
}
TY  - JOUR
AU  - M. Medina-Bárcenas
AU  - D. Keskin Tütüncü
AU  - Y. Kuratomi
TI  - A study on dual square free modules
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 267
EP  - 279
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a8/
LA  - en
ID  - ADM_2021_32_2_a8
ER  - 
%0 Journal Article
%A M. Medina-Bárcenas
%A D. Keskin Tütüncü
%A Y. Kuratomi
%T A study on dual square free modules
%J Algebra and discrete mathematics
%D 2021
%P 267-279
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a8/
%G en
%F ADM_2021_32_2_a8
M. Medina-Bárcenas; D. Keskin Tütüncü; Y. Kuratomi. A study on dual square free modules. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 267-279. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a8/