Homotopy equivalence of normalized and unnormalized complexes, revisited
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 253-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the unnormalized and normalized complexes of a simplicial or a cosimplicial object coming from the Dold–Kan correspondence for an idempotent complete additive category (kernels and cokernels are not required). The normalized complex is defined as the image of certain idempotent in the unnormalized complex. We prove that this idempotent is homotopic to identity via homotopy which is expressed via faces and degeneracies. Hence, the normalized and unnormalized complex are homotopy isomorphic to each other. We provide explicit formulae for the homotopy.
Keywords: idempotent, Dold–Kan correspondence.
Mots-clés : simplicial object; homotopy in chain complexes
@article{ADM_2021_32_2_a7,
     author = {V. Lyubashenko and A. Matsui},
     title = {Homotopy equivalence of normalized and unnormalized complexes, revisited},
     journal = {Algebra and discrete mathematics},
     pages = {253--266},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/}
}
TY  - JOUR
AU  - V. Lyubashenko
AU  - A. Matsui
TI  - Homotopy equivalence of normalized and unnormalized complexes, revisited
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 253
EP  - 266
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/
LA  - en
ID  - ADM_2021_32_2_a7
ER  - 
%0 Journal Article
%A V. Lyubashenko
%A A. Matsui
%T Homotopy equivalence of normalized and unnormalized complexes, revisited
%J Algebra and discrete mathematics
%D 2021
%P 253-266
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/
%G en
%F ADM_2021_32_2_a7
V. Lyubashenko; A. Matsui. Homotopy equivalence of normalized and unnormalized complexes, revisited. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 253-266. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/

[1] Albrecht Dold, “Homology of symmetric products and other functors of complexes”, Annals of Mathematics, Second Series, 68:1 (1958), 54–80 http://www.jstor.org/stable/1970043 | DOI | MR | Zbl

[2] Samuel Eilenberg and Saunders Mac Lane, “On the groups $H(\Pi,n)$, I”, Annals of Mathematics. Second Series, 58:1 (1953), 55–106 | DOI | MR | Zbl

[3] Daniel M. Kan, “Functors involving c.s.s. complexes”, Transactions of the American Mathematical Society, 87:2 (1958), 330–346 | DOI | MR | Zbl

[4] V. V. Lyubashenko, Dold–Kan correspondence, revisited, 2021 | MR | Zbl

[5] Mac Lane, S., Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin–Heidelberg, 1963 | MR | Zbl

[6] John McCleary, A user's guide to spectral sequences, Cambridge Studies in Adv. Math., 58, 2nd ed., Cambridge University Press, Cambridge, UK, 2001 | MR

[7] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Adv. Math., 38, Cambridge University Press, Cambridge–New York–Melbourne, 1994 | MR | Zbl