Mots-clés : simplicial object; homotopy in chain complexes
@article{ADM_2021_32_2_a7,
author = {V. Lyubashenko and A. Matsui},
title = {Homotopy equivalence of normalized and unnormalized complexes, revisited},
journal = {Algebra and discrete mathematics},
pages = {253--266},
year = {2021},
volume = {32},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/}
}
V. Lyubashenko; A. Matsui. Homotopy equivalence of normalized and unnormalized complexes, revisited. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 253-266. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/
[1] Albrecht Dold, “Homology of symmetric products and other functors of complexes”, Annals of Mathematics, Second Series, 68:1 (1958), 54–80 http://www.jstor.org/stable/1970043 | DOI | MR | Zbl
[2] Samuel Eilenberg and Saunders Mac Lane, “On the groups $H(\Pi,n)$, I”, Annals of Mathematics. Second Series, 58:1 (1953), 55–106 | DOI | MR | Zbl
[3] Daniel M. Kan, “Functors involving c.s.s. complexes”, Transactions of the American Mathematical Society, 87:2 (1958), 330–346 | DOI | MR | Zbl
[4] V. V. Lyubashenko, Dold–Kan correspondence, revisited, 2021 | MR | Zbl
[5] Mac Lane, S., Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin–Heidelberg, 1963 | MR | Zbl
[6] John McCleary, A user's guide to spectral sequences, Cambridge Studies in Adv. Math., 58, 2nd ed., Cambridge University Press, Cambridge, UK, 2001 | MR
[7] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Adv. Math., 38, Cambridge University Press, Cambridge–New York–Melbourne, 1994 | MR | Zbl