Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_32_2_a7, author = {V. Lyubashenko and A. Matsui}, title = {Homotopy equivalence of normalized and unnormalized complexes, revisited}, journal = {Algebra and discrete mathematics}, pages = {253--266}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/} }
TY - JOUR AU - V. Lyubashenko AU - A. Matsui TI - Homotopy equivalence of normalized and unnormalized complexes, revisited JO - Algebra and discrete mathematics PY - 2021 SP - 253 EP - 266 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/ LA - en ID - ADM_2021_32_2_a7 ER -
V. Lyubashenko; A. Matsui. Homotopy equivalence of normalized and unnormalized complexes, revisited. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 253-266. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a7/
[1] Albrecht Dold, “Homology of symmetric products and other functors of complexes”, Annals of Mathematics, Second Series, 68:1 (1958), 54–80 http://www.jstor.org/stable/1970043 | DOI | MR | Zbl
[2] Samuel Eilenberg and Saunders Mac Lane, “On the groups $H(\Pi,n)$, I”, Annals of Mathematics. Second Series, 58:1 (1953), 55–106 | DOI | MR | Zbl
[3] Daniel M. Kan, “Functors involving c.s.s. complexes”, Transactions of the American Mathematical Society, 87:2 (1958), 330–346 | DOI | MR | Zbl
[4] V. V. Lyubashenko, Dold–Kan correspondence, revisited, 2021 | MR | Zbl
[5] Mac Lane, S., Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin–Heidelberg, 1963 | MR | Zbl
[6] John McCleary, A user's guide to spectral sequences, Cambridge Studies in Adv. Math., 58, 2nd ed., Cambridge University Press, Cambridge, UK, 2001 | MR
[7] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Adv. Math., 38, Cambridge University Press, Cambridge–New York–Melbourne, 1994 | MR | Zbl