On the structure of the algebra of~derivations of cyclic Leibniz algebras
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 241-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the algebra of derivation of finite-dimensional cyclic Leibniz algebra.
Keywords: Leibniz algebra, cyclic Leibniz algebra, derivation, ideal.
@article{ADM_2021_32_2_a6,
     author = {L. A. Kurdachenko and M. M. Semko and V. S. Yashchuk},
     title = {On the structure of the algebra of~derivations of cyclic {Leibniz} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {241--252},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a6/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - M. M. Semko
AU  - V. S. Yashchuk
TI  - On the structure of the algebra of~derivations of cyclic Leibniz algebras
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 241
EP  - 252
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a6/
LA  - en
ID  - ADM_2021_32_2_a6
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A M. M. Semko
%A V. S. Yashchuk
%T On the structure of the algebra of~derivations of cyclic Leibniz algebras
%J Algebra and discrete mathematics
%D 2021
%P 241-252
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a6/
%G en
%F ADM_2021_32_2_a6
L. A. Kurdachenko; M. M. Semko; V. S. Yashchuk. On the structure of the algebra of~derivations of cyclic Leibniz algebras. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 241-252. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a6/

[1] Bloh A. M., “On a generalization of the concept of Lie algebra”, Dokl. Akad. Nauk SSSR, 165:3 (1965), 471–473 | MR

[2] Loday J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer-Verlag, Berlin, 1992 | DOI | MR | Zbl

[3] Loday J.-L., “Une version non commutative des algèbres de Lie: les algèbras de Leibniz”, L'Enseignement Mathèmatique, 39 (1993), 269–293 | MR | Zbl

[4] Loday J.-L., Pirashvili T., “Universal enveloping algebras of Leibniz algebras and (co)homology”, Math. Annalen, 296 (1993), 139–158 | DOI | MR | Zbl

[5] Ayupov Sh.A., Omirov B. A., Rakhimov I. S., Leibniz Algebras: Structure and Classification, CRC Press, Taylor Francis Group, 2020 | MR | Zbl

[6] Kurdachenko L. A., Otal J., Pypka A. A., “Relationships between factors of canonical central series of Leibniz algebras”, European Journal of Mathematics, 2 (2016), 565–577 | DOI | MR | Zbl

[7] Chupordya V. A., Kurdachenko L. A., Subbotin I.Ya., “On some “minimal” Leibniz algebras”, J. Algebra Appl., 16:2 (2017), 1750082, 16 pp. | DOI | MR | Zbl

[8] Semko M. M., Skaskiv L. V., Yarovaya O. A., “On the derivations of cyclic nilpotent Leibniz algebras”, The 13 algebraic conference in Ukraine, book of abstract (July 6–9, 2021), Taras Shevchenko National University of Kyiv, 73 | MR

[9] Kurdachenko L. A., Subbotin I.Ya., Yashchuk V. S., On the endomorphisms and derivations of some Leibniz algebras, 2021, arXiv: math.RA/2104.05922

[10] Kirichenko V. V., Kurdachenko L. A., Pypka A. A., Subbotin I.Ya., “Some aspects of Leibniz algebra theory”, Algebra Discrete Math., 24:1 (2017), 113–145 | MR

[11] Kurdachenko L. A., Semko N. N., Subbotin I.Ya., “The Leibniz algebras whose subalgebras are ideals”, Open Mathematics, 15 (2017), 92–100 | DOI | MR | Zbl