Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_32_2_a5, author = {S. Kour}, title = {On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$}, journal = {Algebra and discrete mathematics}, pages = {236--240}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/} }
S. Kour. On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 236-240. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/
[1] S. S. Abhyankar, W. Heinzer, P. Eakin, “On the uniqueness of the coefficient ring in a polynomial ring”, J. Algebra, 23 (1972), 310–342 | DOI | MR | Zbl
[2] J. Berson, Derivations on polynomial rings over a domain, Master Thesis, University of Nijmegen, The Netherlands, 1999
[3] M. El Kahoui, “Constants of derivations in polynomial rings over unique factorization domains”, Proc. Amer. Math. Soc., 132 (2004), 2537–2541 | DOI | MR | Zbl
[4] H. Kojima, “On the kernels of some higher derivations in polynomial rings”, J. Pure Appl. Algebra, 215 (2011), 2512–2514 | DOI | MR | Zbl
[5] H. Kojima, N. Wada, “Kernels of higher derivations in $R[x,y]$”, Comm. Algebra, 39 (2011), 1577–1582 | DOI | MR | Zbl
[6] A. Nowicki, M. Nagata, “Rings of constants for $k$-derivations in $k[x_1, \ldots, x_n]$”, J. Math. Kyoto Uni., 28 (1988), 111–118 | MR | Zbl
[7] A. Nowicki, Polynomial derivations and their rings of constants, Uniwersytet Mikolaja Kopernika, 1994 | MR | Zbl
[8] N. Wada, “Some results on the kernels of higher derivations on $k[x,y]$ and $k(x,y)$”, Colloq. Math., 122 (2011), 185–189 | DOI | MR | Zbl
[9] A. Zaks, “Interpre'tations algebrico-ge'ometriques du quatorzie'me proble'me de Hilbert”, Bull. Sci. Math., 78 (1954), 155–168 | MR