On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 236-240

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an integral domain and $A= R[x_1, \dots, x_n]$ be the polynomial ring in $n$ variables. In this article, we study the kernel of higher $R$-derivation $D$ of $A$. It is shown that if $R$ is a HCF ring and $\operatorname{tr.deg}_R(A^D) \leq 1$ then $A^D = R[f]$ for some $f\in A$.
Keywords: derivation, higher derivation, kernel of derivation.
@article{ADM_2021_32_2_a5,
     author = {S. Kour},
     title = {On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$},
     journal = {Algebra and discrete mathematics},
     pages = {236--240},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/}
}
TY  - JOUR
AU  - S. Kour
TI  - On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 236
EP  - 240
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/
LA  - en
ID  - ADM_2021_32_2_a5
ER  - 
%0 Journal Article
%A S. Kour
%T On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$
%J Algebra and discrete mathematics
%D 2021
%P 236-240
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/
%G en
%F ADM_2021_32_2_a5
S. Kour. On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 236-240. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/