On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 236-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an integral domain and $A= R[x_1, \dots, x_n]$ be the polynomial ring in $n$ variables. In this article, we study the kernel of higher $R$-derivation $D$ of $A$. It is shown that if $R$ is a HCF ring and $\operatorname{tr.deg}_R(A^D) \leq 1$ then $A^D = R[f]$ for some $f\in A$.
Keywords: derivation, higher derivation, kernel of derivation.
@article{ADM_2021_32_2_a5,
     author = {S. Kour},
     title = {On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$},
     journal = {Algebra and discrete mathematics},
     pages = {236--240},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/}
}
TY  - JOUR
AU  - S. Kour
TI  - On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 236
EP  - 240
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/
LA  - en
ID  - ADM_2021_32_2_a5
ER  - 
%0 Journal Article
%A S. Kour
%T On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$
%J Algebra and discrete mathematics
%D 2021
%P 236-240
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/
%G en
%F ADM_2021_32_2_a5
S. Kour. On the kernels of higher $R$-derivations of~$R[x_1,\dots,x_n]$. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 236-240. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a5/

[1] S. S. Abhyankar, W. Heinzer, P. Eakin, “On the uniqueness of the coefficient ring in a polynomial ring”, J. Algebra, 23 (1972), 310–342 | DOI | MR | Zbl

[2] J. Berson, Derivations on polynomial rings over a domain, Master Thesis, University of Nijmegen, The Netherlands, 1999

[3] M. El Kahoui, “Constants of derivations in polynomial rings over unique factorization domains”, Proc. Amer. Math. Soc., 132 (2004), 2537–2541 | DOI | MR | Zbl

[4] H. Kojima, “On the kernels of some higher derivations in polynomial rings”, J. Pure Appl. Algebra, 215 (2011), 2512–2514 | DOI | MR | Zbl

[5] H. Kojima, N. Wada, “Kernels of higher derivations in $R[x,y]$”, Comm. Algebra, 39 (2011), 1577–1582 | DOI | MR | Zbl

[6] A. Nowicki, M. Nagata, “Rings of constants for $k$-derivations in $k[x_1, \ldots, x_n]$”, J. Math. Kyoto Uni., 28 (1988), 111–118 | MR | Zbl

[7] A. Nowicki, Polynomial derivations and their rings of constants, Uniwersytet Mikolaja Kopernika, 1994 | MR | Zbl

[8] N. Wada, “Some results on the kernels of higher derivations on $k[x,y]$ and $k(x,y)$”, Colloq. Math., 122 (2011), 185–189 | DOI | MR | Zbl

[9] A. Zaks, “Interpre'tations algebrico-ge'ometriques du quatorzie'me proble'me de Hilbert”, Bull. Sci. Math., 78 (1954), 155–168 | MR