Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_32_2_a2, author = {F. Farshadifar}, title = {$S$-second submodules of a~module}, journal = {Algebra and discrete mathematics}, pages = {197--210}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a2/} }
F. Farshadifar. $S$-second submodules of a~module. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 197-210. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a2/
[1] Anderson D. D., Winders M., “Idealization of a module”, Journal of Commutative Algebra, 1:1 (2009), 3–56 | DOI | MR | Zbl
[2] Ansari-Toroghy H., Farshadifar F., “The dual notion of multiplication modules”, Taiwanese J. Math., 11:4 (2007), 1189–1201 | DOI | MR | Zbl
[3] Ansari-Toroghy H., Farshadifar F., “On the dual notion of prime submodules”, Algebra Colloq., 19, Spec 1 (2012), 1109–1116 | DOI | MR | Zbl
[4] Ansari-Toroghy H., Farshadifar F., “The dual notion of some generalizations of prime submodules”, Comm. Algebra, 39 (2011), 2396–2416 | DOI | MR | Zbl
[5] Ansari-Toroghy H., Farshadifar F., “On the dual notion of prime submodules (II)”, Mediterr. J. Math., 9:2 (2012), 329–338 | DOI | MR
[6] Ansari-Toroghy H., Farshadifar F., “Strong comultiplication modules”, CMU J. Nat. Sci., 8:1 (2009), 105–113 | MR
[7] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley, 1969 | MR | Zbl
[8] A. Barnard, “Multiplication modules”, J. Algebra, 71 (1981), 174–178 | DOI | MR | Zbl
[9] Dauns J., “Prime submodules”, J. Reine Angew. Math., 298 (1978), 156–181 | MR | Zbl
[10] Faith C., “Rings whose modules have maximal submodules”, Publ. Mat., 39 (1995), 201–214 | DOI | MR | Zbl
[11] Fuchs L., Heinzer W., Olberding B., “Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed”, Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, 2006, 121–145 | DOI | MR | Zbl
[12] Gilmer R., Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, 90, Queen's University, Kingston, Canada, 1992 | MR | Zbl
[13] Nagata M., Local Rings, Interscience, New York, 1962 | MR | Zbl
[14] Sevim E. S., Arabaci T., Tekir Ü., Koc S., “On S-prime submodules”, Turkish Journal of Mathematics, 43:2 (2019), 1036–1046 | DOI | MR | Zbl
[15] Wang F., Kim H., Foundations of Commutative Rings and Their Modules, Springer, Singapore, 2016 | MR | Zbl
[16] Yassemi S., “The dual notion of prime submodules”, Arch. Math. (Brno), 37 (2001), 273–278 | MR | Zbl