On classifying the non-Tits $P$-critical posets
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 185-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2005, the authors described all introduced by them $P$-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits $P$-critical posets as a special case of the $P$-critical posets. In this paper we classify all the non-Tits $P$-critical posets without complex calculations and without using the list of all $P$-critical ones.
Keywords: Kleiner's poset, minimax equivalence, $0$-balanced subposet, $P$-critical poset, Tits $P$-critical poset.
Mots-clés : Hasse diagram, quadratic Tits form
@article{ADM_2021_32_2_a1,
     author = {V. M. Bondarenko and M. Styopochkina},
     title = {On classifying the {non-Tits} $P$-critical posets},
     journal = {Algebra and discrete mathematics},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/}
}
TY  - JOUR
AU  - V. M. Bondarenko
AU  - M. Styopochkina
TI  - On classifying the non-Tits $P$-critical posets
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 185
EP  - 196
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/
LA  - en
ID  - ADM_2021_32_2_a1
ER  - 
%0 Journal Article
%A V. M. Bondarenko
%A M. Styopochkina
%T On classifying the non-Tits $P$-critical posets
%J Algebra and discrete mathematics
%D 2021
%P 185-196
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/
%G en
%F ADM_2021_32_2_a1
V. M. Bondarenko; M. Styopochkina. On classifying the non-Tits $P$-critical posets. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/

[1] P. Gabriel, “Unzerlegbare Darstellungen”, Manuscripta Math., 6 (1972), 71–103 | DOI | MR | Zbl

[2] J. Soviet Math., 3 (1975), 585–606 | DOI | MR | Zbl

[3] D. Simson, Linear representations of partially ordered sets and vector space categories, Gordon and Breach, Philadelphia, 1992 | MR | Zbl

[4] Funct. Anal. Appl., 8:3 (1974), 219–225 | DOI | MR | Zbl

[5] J. Soviet Math., 3 (1975), 607–615 | DOI | MR | Zbl

[6] V. M. Bondarenko, M. V. Styopochkina, “On posets of width two with positive Tits form”, Algebra Discrete Math., 2005, no. 2, 585–606 | MR

[7] V. M. Bondarenko, M. V. Styopochkina, “$(\min,\max)$-Equivalence of partially ordered sets and the Tits quadratic form”, Zb. Pr. Inst. Mat. NAN Ukr./Problems of Analysis and Algebra, 2:3 (2005), 18–58 (in Russian) | Zbl

[8] V. M. Bondarenko, M. V. Styopochkina, “On finite posets of inj-finite type and their Tits forms”, Algebra Discrete Math., 2006, no. 2, 17–21 | MR | Zbl

[9] Nonlinear Oscillations, 9 (2006), 312–316 | DOI | MR | MR | Zbl

[10] A. Polak, D. Simson, “Coxeter spectral classification of almost TP-critical one-peak posets using symbolic and numeric computations”, Linear Algebra Appl., 445 (2014), 223–255 | DOI | MR | Zbl

[11] V. M. Bondarenko, “On $(\min,\max)$-equivalence of posets and applications to the Tits forms”, Bull. Taras Shevchenko University of Kyiv (series: Physics Mathematics), 1 (2005), 24–25 | Zbl

[12] V. M. Bondarenko, A. M. Polishchuck, “On finiteness of critical Tits forms of posets”, Proc. Inst. Math. NAS Ukraine, 50 (2004), 1061–1063 | MR | Zbl

[13] S. A. Ovsienko, Integral weakly positive forms, Schur Matrix Problems and Quadratic Forms, preprint 78.25, Inst. Mat. Acad. Nauk. Ukrain. SSR, Kiev, 1978 (in Russian) | Zbl

[14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1984 | DOI | MR | Zbl

[15] V. M. Bondarenko, A. G. Zavadskij, L. A. Nazarova, “On representations of tame partially ordered sets”, Representations and Quadratic Forms, Inst. Mat. Acad. Nauk. Ukrain. SSR, Kiev, 1979, 75–105 (in Russian) | MR

[16] V. M. Bondarenko, M. V. Styopochkina, “Strengthening of a theorem on Coxeter-Euclidean type of principal partially ordered sets”, Bull. Taras Shevchenko University of Kyiv (series: Physics Mathematics), 4 (2018), 8–15 | DOI | Zbl