On classifying the non-Tits $P$-critical posets
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 185-196

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2005, the authors described all introduced by them $P$-critical posets (minimal finite posets with the quadratic Tits form not being positive); up to isomorphism, their number is 132 (75 if duality is considered). Later (in 2014) A. Polak and D. Simson offered an alternative way of proving by using computer algebra tools. In doing this, they defined and described the Tits $P$-critical posets as a special case of the $P$-critical posets. In this paper we classify all the non-Tits $P$-critical posets without complex calculations and without using the list of all $P$-critical ones.
Keywords: Kleiner's poset, minimax equivalence, $0$-balanced subposet, $P$-critical poset, Tits $P$-critical poset.
Mots-clés : Hasse diagram, quadratic Tits form
@article{ADM_2021_32_2_a1,
     author = {V. M. Bondarenko and M. Styopochkina},
     title = {On classifying the {non-Tits} $P$-critical posets},
     journal = {Algebra and discrete mathematics},
     pages = {185--196},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/}
}
TY  - JOUR
AU  - V. M. Bondarenko
AU  - M. Styopochkina
TI  - On classifying the non-Tits $P$-critical posets
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 185
EP  - 196
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/
LA  - en
ID  - ADM_2021_32_2_a1
ER  - 
%0 Journal Article
%A V. M. Bondarenko
%A M. Styopochkina
%T On classifying the non-Tits $P$-critical posets
%J Algebra and discrete mathematics
%D 2021
%P 185-196
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/
%G en
%F ADM_2021_32_2_a1
V. M. Bondarenko; M. Styopochkina. On classifying the non-Tits $P$-critical posets. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 185-196. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a1/