Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_32_2_a0, author = {C. Arellano and J. Castro and J. R{\'\i}os}, title = {On the nilpotence of the prime radical in module categories}, journal = {Algebra and discrete mathematics}, pages = {161--184}, publisher = {mathdoc}, volume = {32}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/} }
TY - JOUR AU - C. Arellano AU - J. Castro AU - J. Ríos TI - On the nilpotence of the prime radical in module categories JO - Algebra and discrete mathematics PY - 2021 SP - 161 EP - 184 VL - 32 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/ LA - en ID - ADM_2021_32_2_a0 ER -
C. Arellano; J. Castro; J. Ríos. On the nilpotence of the prime radical in module categories. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 161-184. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/
[1] T. Albu, G. Krause, M. Teply, “The nilpotence of the -closed prime radical in rings with -Krull dimension”, J. Algebra, 229 (2000), 498–513 | DOI | MR | Zbl
[2] T. Albu, C. Nastasescu, Relative Finiteness in Module Theory, Dekker, New York, 1995 | MR
[3] J. Beachy, “$M$-injective modules and prime $M$-ideals”, Comm. Algebra, 30:10 (2002), 4639–4676 | DOI | MR
[4] L. Bican, P. Jambor, T. Kepka, P. Nemec, “Prime and coprime modules”, Fundamenta Matematicae, 107 (1980), 33–44 | DOI | MR
[5] J. Castro, J. Ríos, “Prime submodules and local Gabriel correspondence in $\sigma[M]$”, Comm. Algebra, 40:1 (2012), 213–232 | DOI | MR | Zbl
[6] J. Castro, J. Ríos, “FBN modules”, Comm. Algebra, 40:12 (2012), 4604–4616 | DOI | MR | Zbl
[7] J. Castro, J. Ríos, “Krull dimension and classical Krull dimension of modules”, Comm. Algebra, 42:7 (2014), 3183–3204 | DOI | MR | Zbl
[8] J. Castro, M. Medina, J. Ríos, “Modules with ascending chain condition on annihilators and goldie modules”, Comm. Algebra, 45:6 (2017), 2334–2349 | DOI | MR | Zbl
[9] J. Castro, M. Medina, J. Ríos, A. Zaldívar, “On semiprime goldie modules”, Comm. Algebra, 44:11 (2016), 4749–4768 | DOI | MR | Zbl
[10] J. Golan, Torsion Theories, Longman Scientific Technical, Harlow, 1986 | MR | Zbl
[11] R. Gordon, J. C. Robson, Krull Dimension, Memoirs of the American Mathematical Society, 133, American Mathematical Society, Providence, RI, 1973 | MR | Zbl
[12] T. H. Lenagan, “The nil radical of a ring with Krull dimension”, Bull. London Math. Soc., 5 (1973), 307–311 | DOI | MR | Zbl
[13] C. Nastasescu, and F. Van Oystaeyen, Dimensions of Ring Theory, Reidel, Dordrecht, 1987 | MR | Zbl
[14] F. Raggi, J. Rios, H. Rincón, R. Fernández-Alonso, C. Signoret, “Prime and irreducible preradicals”, J. Algebra Appl., 4:4 (2005), 451–466 | DOI | MR | Zbl
[15] F. Raggi, J. Rios, H. Rincón, R. Fernández-Alonso, “Semiprime Preradicals”, Comm. Algebra., 37:7 (2009), 2811–2822 | DOI | MR | Zbl
[16] B. Stenstrom, Rings of Quotients, Springer-Verlag, New York–Heidelberg, 1975 | MR | Zbl
[17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991 | MR | Zbl
[18] R. Wisbauer, Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Addison Wesley Longman Limited, England, 1996 | MR | Zbl