On the nilpotence of the prime radical in module categories
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 161-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $M\in R$-Mod and $\tau$ a hereditary torsion theory on the category $\sigma [M]$ we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of $\tau$-pure prime radical $\mathfrak{N}_{\tau}(M) =\mathfrak{N}_{\tau}$ as the intersection of all $\tau$-pure prime submodules of $M$. We give necessary and sufficient conditions for the $\tau$-nilpotence of $\mathfrak{N}_{\tau}(M) $. We prove that if $M$ is a finitely generated $R$-module, progenerator in $\sigma [M]$ and $\chi\neq \tau$ is FIS-invariant torsion theory such that $M$ has $\tau$-Krull dimension, then $\mathfrak{N}_{\tau}$ is $\tau$-nilpotent.
Keywords: Goldie modules, torsion theory, nilpotent ideal, nilpotence.
Mots-clés : prime modules, semiprime modules
@article{ADM_2021_32_2_a0,
     author = {C. Arellano and J. Castro and J. R{\'\i}os},
     title = {On the nilpotence of the prime radical in module categories},
     journal = {Algebra and discrete mathematics},
     pages = {161--184},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/}
}
TY  - JOUR
AU  - C. Arellano
AU  - J. Castro
AU  - J. Ríos
TI  - On the nilpotence of the prime radical in module categories
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 161
EP  - 184
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/
LA  - en
ID  - ADM_2021_32_2_a0
ER  - 
%0 Journal Article
%A C. Arellano
%A J. Castro
%A J. Ríos
%T On the nilpotence of the prime radical in module categories
%J Algebra and discrete mathematics
%D 2021
%P 161-184
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/
%G en
%F ADM_2021_32_2_a0
C. Arellano; J. Castro; J. Ríos. On the nilpotence of the prime radical in module categories. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 161-184. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/

[1] T. Albu, G. Krause, M. Teply, “The nilpotence of the -closed prime radical in rings with -Krull dimension”, J. Algebra, 229 (2000), 498–513 | DOI | MR | Zbl

[2] T. Albu, C. Nastasescu, Relative Finiteness in Module Theory, Dekker, New York, 1995 | MR

[3] J. Beachy, “$M$-injective modules and prime $M$-ideals”, Comm. Algebra, 30:10 (2002), 4639–4676 | DOI | MR

[4] L. Bican, P. Jambor, T. Kepka, P. Nemec, “Prime and coprime modules”, Fundamenta Matematicae, 107 (1980), 33–44 | DOI | MR

[5] J. Castro, J. Ríos, “Prime submodules and local Gabriel correspondence in $\sigma[M]$”, Comm. Algebra, 40:1 (2012), 213–232 | DOI | MR | Zbl

[6] J. Castro, J. Ríos, “FBN modules”, Comm. Algebra, 40:12 (2012), 4604–4616 | DOI | MR | Zbl

[7] J. Castro, J. Ríos, “Krull dimension and classical Krull dimension of modules”, Comm. Algebra, 42:7 (2014), 3183–3204 | DOI | MR | Zbl

[8] J. Castro, M. Medina, J. Ríos, “Modules with ascending chain condition on annihilators and goldie modules”, Comm. Algebra, 45:6 (2017), 2334–2349 | DOI | MR | Zbl

[9] J. Castro, M. Medina, J. Ríos, A. Zaldívar, “On semiprime goldie modules”, Comm. Algebra, 44:11 (2016), 4749–4768 | DOI | MR | Zbl

[10] J. Golan, Torsion Theories, Longman Scientific Technical, Harlow, 1986 | MR | Zbl

[11] R. Gordon, J. C. Robson, Krull Dimension, Memoirs of the American Mathematical Society, 133, American Mathematical Society, Providence, RI, 1973 | MR | Zbl

[12] T. H. Lenagan, “The nil radical of a ring with Krull dimension”, Bull. London Math. Soc., 5 (1973), 307–311 | DOI | MR | Zbl

[13] C. Nastasescu, and F. Van Oystaeyen, Dimensions of Ring Theory, Reidel, Dordrecht, 1987 | MR | Zbl

[14] F. Raggi, J. Rios, H. Rincón, R. Fernández-Alonso, C. Signoret, “Prime and irreducible preradicals”, J. Algebra Appl., 4:4 (2005), 451–466 | DOI | MR | Zbl

[15] F. Raggi, J. Rios, H. Rincón, R. Fernández-Alonso, “Semiprime Preradicals”, Comm. Algebra., 37:7 (2009), 2811–2822 | DOI | MR | Zbl

[16] B. Stenstrom, Rings of Quotients, Springer-Verlag, New York–Heidelberg, 1975 | MR | Zbl

[17] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading, 1991 | MR | Zbl

[18] R. Wisbauer, Modules and Algebras: Bimodule Structure and Group Actions on Algebras, Addison Wesley Longman Limited, England, 1996 | MR | Zbl