On the nilpotence of the prime radical in module categories
Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 161-184

Voir la notice de l'article provenant de la source Math-Net.Ru

For $M\in R$-Mod and $\tau$ a hereditary torsion theory on the category $\sigma [M]$ we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of $\tau$-pure prime radical $\mathfrak{N}_{\tau}(M) =\mathfrak{N}_{\tau}$ as the intersection of all $\tau$-pure prime submodules of $M$. We give necessary and sufficient conditions for the $\tau$-nilpotence of $\mathfrak{N}_{\tau}(M) $. We prove that if $M$ is a finitely generated $R$-module, progenerator in $\sigma [M]$ and $\chi\neq \tau$ is FIS-invariant torsion theory such that $M$ has $\tau$-Krull dimension, then $\mathfrak{N}_{\tau}$ is $\tau$-nilpotent.
Keywords: Goldie modules, torsion theory, nilpotent ideal, nilpotence.
Mots-clés : prime modules, semiprime modules
@article{ADM_2021_32_2_a0,
     author = {C. Arellano and J. Castro and J. R{\'\i}os},
     title = {On the nilpotence of the prime radical in module categories},
     journal = {Algebra and discrete mathematics},
     pages = {161--184},
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/}
}
TY  - JOUR
AU  - C. Arellano
AU  - J. Castro
AU  - J. Ríos
TI  - On the nilpotence of the prime radical in module categories
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 161
EP  - 184
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/
LA  - en
ID  - ADM_2021_32_2_a0
ER  - 
%0 Journal Article
%A C. Arellano
%A J. Castro
%A J. Ríos
%T On the nilpotence of the prime radical in module categories
%J Algebra and discrete mathematics
%D 2021
%P 161-184
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/
%G en
%F ADM_2021_32_2_a0
C. Arellano; J. Castro; J. Ríos. On the nilpotence of the prime radical in module categories. Algebra and discrete mathematics, Tome 32 (2021) no. 2, pp. 161-184. http://geodesic.mathdoc.fr/item/ADM_2021_32_2_a0/