Cancellation ideals of a ring extension
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 138-146

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of cancellation ideals of ring extensions. Let $R \subseteq S$ be a ring extension. A nonzero $S$-regular ideal $I$ of $R$ is called a (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever $IB = IC$ for two $S$-regular (finitely generated) $R$-submodules $B$ and $C$ of $S$, then $B =C$. We show that a finitely generated ideal $I$ is a cancellation ideal of the ring extension $R\subseteq S$ if and only if $I$ is $S$-invertible.
Keywords: ring extension, cancellation ideal, pullback diagram.
@article{ADM_2021_32_1_a8,
     author = {S. Tchamna},
     title = {Cancellation ideals of a ring extension},
     journal = {Algebra and discrete mathematics},
     pages = {138--146},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/}
}
TY  - JOUR
AU  - S. Tchamna
TI  - Cancellation ideals of a ring extension
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 138
EP  - 146
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/
LA  - en
ID  - ADM_2021_32_1_a8
ER  - 
%0 Journal Article
%A S. Tchamna
%T Cancellation ideals of a ring extension
%J Algebra and discrete mathematics
%D 2021
%P 138-146
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/
%G en
%F ADM_2021_32_1_a8
S. Tchamna. Cancellation ideals of a ring extension. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 138-146. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/