Cancellation ideals of a ring extension
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 138-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of cancellation ideals of ring extensions. Let $R \subseteq S$ be a ring extension. A nonzero $S$-regular ideal $I$ of $R$ is called a (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever $IB = IC$ for two $S$-regular (finitely generated) $R$-submodules $B$ and $C$ of $S$, then $B =C$. We show that a finitely generated ideal $I$ is a cancellation ideal of the ring extension $R\subseteq S$ if and only if $I$ is $S$-invertible.
Keywords: ring extension, cancellation ideal, pullback diagram.
@article{ADM_2021_32_1_a8,
     author = {S. Tchamna},
     title = {Cancellation ideals of a ring extension},
     journal = {Algebra and discrete mathematics},
     pages = {138--146},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/}
}
TY  - JOUR
AU  - S. Tchamna
TI  - Cancellation ideals of a ring extension
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 138
EP  - 146
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/
LA  - en
ID  - ADM_2021_32_1_a8
ER  - 
%0 Journal Article
%A S. Tchamna
%T Cancellation ideals of a ring extension
%J Algebra and discrete mathematics
%D 2021
%P 138-146
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/
%G en
%F ADM_2021_32_1_a8
S. Tchamna. Cancellation ideals of a ring extension. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 138-146. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a8/

[1] Anderson D. D., Anderson D. F., “Some remarks on cancellation ideals”, Math Japonica, 29:6 (1984), 879–886 | MR | Zbl

[2] Anderson D. D., Roitman M., “A characterization of cancellation ideals”, Proc. Amer. Math. Soc., 10 (1997), 2853–2854 | DOI | MR | Zbl

[3] Fuchs L., Salce L., Modules over non-Noetherian domains, Mathematical Surveys and Monographs, 84, American Mathematical Society, Providence, RI, 2001, xvi+613 pp. | MR | Zbl

[4] Gabelli S., Houston E., “Ideal theory in pullbacks”, Non-Noetherian commutative ring theory, Math. Appl., 520, eds. Chapman S. T. and Glaz S., Kluwer Acad. Publ., Dordrecht, 2000, 199–227 | MR | Zbl

[5] Knebusch M., Zhang D., Manis valuations and Prüfer extensions I, Lecture Notes in Mathematics, 1791, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[6] Paudel L., Tchamna S., “On the saturation of submodules”, Algebra Discrete Math., 26:1 (2018), 110–123 | MR | Zbl

[7] Tchamna S., “Multiplicative canonical ideals of ring extensions”, Journal of Algebra and Its Appl., 16:4 (2017), 170069 | MR