Diagonal torsion matrices associated with modular data
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 127-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group $\mathrm{SL}_2(\mathbb{Z})$. Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.
Keywords: fusion rings, $C$-algebras.
Mots-clés : Fourier matrices, diagonal torsion matrices
@article{ADM_2021_32_1_a7,
     author = {G. Singh},
     title = {Diagonal torsion matrices associated with modular data},
     journal = {Algebra and discrete mathematics},
     pages = {127--137},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/}
}
TY  - JOUR
AU  - G. Singh
TI  - Diagonal torsion matrices associated with modular data
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 127
EP  - 137
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/
LA  - en
ID  - ADM_2021_32_1_a7
ER  - 
%0 Journal Article
%A G. Singh
%T Diagonal torsion matrices associated with modular data
%J Algebra and discrete mathematics
%D 2021
%P 127-137
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/
%G en
%F ADM_2021_32_1_a7
G. Singh. Diagonal torsion matrices associated with modular data. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/

[1] E. Bannai and E. Bannai, “Spin Models on Finite Cyclic Groups”, Journal of Algebraic Combinatorics, 3 (1994), 243–259 | DOI | MR | Zbl

[2] Michael Cuntz, “Integral modular data and congruences”, J Algebr. Comb., 29 (2009), 357–387 | DOI | MR | Zbl

[3] Allen Herman and Gurmail Singh, “Central torsion units of integral reality-based algebras with a positive degree map”, International Electronic Journal of Algebra, 21 (2017), 121–126 | DOI | MR | Zbl

[4] Martin Schottenholer, A Mathematical Introduction to Conformal Field Theory, 2nd edition, Springer-Verlag, Berlin–Heidelberg, 2008 | MR | Zbl

[5] Gurmail Singh, “Classification of homogeneous Fourier matrices”, Algebra Discrete Math., 27:1 (2019), 75–84 | MR | Zbl

[6] Gurmail Singh, “Fourier matrices of small rank”, Journal of Algebra Combinatorics Discrete Structures and Applications, 5:2 (2018), 51–63 | MR | Zbl

[7] Ali Zahabi, Applications of Conformal Field Theory and String Theory in Statistical Systems, Ph.D. Dissertation, University of Helsinki, Helsinki, Finland, 2013