Diagonal torsion matrices associated with modular data
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 127-137
Voir la notice de l'article provenant de la source Math-Net.Ru
Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group $\mathrm{SL}_2(\mathbb{Z})$. Cuntz (2007) defined isomorphic integral modular data. Here we discuss isomorphic integral and non-integral modular data as well as non-isomorphic but closely related modular data. In this paper, we give some insights into diagonal torsion matrices associated to modular data.
Keywords:
fusion rings, $C$-algebras.
Mots-clés : Fourier matrices, diagonal torsion matrices
Mots-clés : Fourier matrices, diagonal torsion matrices
@article{ADM_2021_32_1_a7,
author = {G. Singh},
title = {Diagonal torsion matrices associated with modular data},
journal = {Algebra and discrete mathematics},
pages = {127--137},
publisher = {mathdoc},
volume = {32},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/}
}
G. Singh. Diagonal torsion matrices associated with modular data. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/