Mots-clés : Fourier matrices, diagonal torsion matrices
@article{ADM_2021_32_1_a7,
author = {G. Singh},
title = {Diagonal torsion matrices associated with modular data},
journal = {Algebra and discrete mathematics},
pages = {127--137},
year = {2021},
volume = {32},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/}
}
G. Singh. Diagonal torsion matrices associated with modular data. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 127-137. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a7/
[1] E. Bannai and E. Bannai, “Spin Models on Finite Cyclic Groups”, Journal of Algebraic Combinatorics, 3 (1994), 243–259 | DOI | MR | Zbl
[2] Michael Cuntz, “Integral modular data and congruences”, J Algebr. Comb., 29 (2009), 357–387 | DOI | MR | Zbl
[3] Allen Herman and Gurmail Singh, “Central torsion units of integral reality-based algebras with a positive degree map”, International Electronic Journal of Algebra, 21 (2017), 121–126 | DOI | MR | Zbl
[4] Martin Schottenholer, A Mathematical Introduction to Conformal Field Theory, 2nd edition, Springer-Verlag, Berlin–Heidelberg, 2008 | MR | Zbl
[5] Gurmail Singh, “Classification of homogeneous Fourier matrices”, Algebra Discrete Math., 27:1 (2019), 75–84 | MR | Zbl
[6] Gurmail Singh, “Fourier matrices of small rank”, Journal of Algebra Combinatorics Discrete Structures and Applications, 5:2 (2018), 51–63 | MR | Zbl
[7] Ali Zahabi, Applications of Conformal Field Theory and String Theory in Statistical Systems, Ph.D. Dissertation, University of Helsinki, Helsinki, Finland, 2013