Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_32_1_a6, author = {J. G. Rodr{\'\i}guez-Nieto and O. P. Salazar-D{\'\i}az and R. Vel\'asquez}, title = {The structure of g-digroup actions and representation theory}, journal = {Algebra and discrete mathematics}, pages = {103--126}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a6/} }
TY - JOUR AU - J. G. Rodríguez-Nieto AU - O. P. Salazar-Díaz AU - R. Velásquez TI - The structure of g-digroup actions and representation theory JO - Algebra and discrete mathematics PY - 2021 SP - 103 EP - 126 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a6/ LA - en ID - ADM_2021_32_1_a6 ER -
%0 Journal Article %A J. G. Rodríguez-Nieto %A O. P. Salazar-Díaz %A R. Velásquez %T The structure of g-digroup actions and representation theory %J Algebra and discrete mathematics %D 2021 %P 103-126 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a6/ %G en %F ADM_2021_32_1_a6
J. G. Rodríguez-Nieto; O. P. Salazar-Díaz; R. Velásquez. The structure of g-digroup actions and representation theory. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 103-126. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a6/
[1] Soviet Math. Dokl., 6 (1965), 1450–1452 | MR | Zbl
[2] M. Bordemann and F. Wagemann, “Global integration of Leibniz algebras”, Journal of Lie Theory, 27:2 (2017), 555–567 | MR | Zbl
[3] S. Covez, “The local integration of Leibniz algebras”, Annales de l'institut Fourier, 63:1 (2013) | MR | Zbl
[4] R. Felipe, “Digroups and their linear presentations”, East-West J. Math., 8:1 (2006), 27–48 | MR | Zbl
[5] H. Guzmán and F. Ongay, “On the concept of digroup action”, Semigroup Forum, 100 (2020), 461–481 | DOI | MR | Zbl
[6] D. L. Johnson, Presentations of groups, Cambridge University Press, 1997 | MR | Zbl
[7] M. K. Kinyon, “Leibniz algebras, Lie racks, and digroups”, J. Lie Theory, 17:1 (2007), 99–114 | MR | Zbl
[8] K. Liu, A class of group-like objects
[9] J.-L. Loday, “Une version non commutative des algèbres de Lie: les algèbres de Leibniz”, Enseign. Math. (2), 39:3-4 (1993), 269–293 | MR | Zbl
[10] Loday, J.-L., “Dialgebras”, Dialgebras and related operads, Lect. Notes Math., 1763, Springer-Verlag, Berlin, 2001, 7–66 | DOI | MR | Zbl
[11] J. Monterde and F. Ongay, “On integral manifolds for leibniz algebras”, Algebra, 2014 (2014) | DOI
[12] J. Mostovoy, “A comment on the integration of Leibniz algebras”, Comm. Algebra, 41:1 (2013), 185–194 | DOI | MR | Zbl
[13] F. Ongay, “On the notion of digroup”, Comunicaciones del CIMAT, 2010, I-10-04
[14] J. G. Rodríguez-Nieto, O. P. Salazar-Díaz, and R. Velásquez, “Augmented, free and tensor generalized digroups”, Open Mathematics, 17:1 (2019), 71–88 | DOI | MR | Zbl
[15] J. G. Rodríguez-Nieto, O. P. Salazar-Díaz, and R. Velásquez, Sylow-type theorems for generalized digroups, submitted, 2019 | MR
[16] J. G. Rodríguez-Nieto, O. P. Salazar-Díaz, and R. Velásquez, “Abelian and symmetric generalized digroups”, Semigroup Forum, 3 (2021) | MR | Zbl
[17] O. P. Salazar-Díaz, R. Velásquez, and L. A. Wills-Toro, “Generalized digroups”, Communications in Algebra, 44 (2016), 2760–2785 | DOI | MR | Zbl
[18] J. D. H. Smith, “Directional algebras”, Houston Journal of Mathematics, 42:1 (2016), 1–22 | MR | Zbl
[19] A. V. Zhuchok, “Semilattices of subdimonoids”, Asian-European Journal of Mathematics, 4:2 (2011), 359–371 | DOI | MR | Zbl
[20] A. V. Zhuchok, “Free $n$-nilpotent dimonoids”, Algebra Discrete Math., 16:2 (2013), 299–310 | MR | Zbl
[21] A. V. Zhuchok, “Free products of dimonoids”, Quasigroups and Related Systems, 21:2 (2013), 273–278 | MR | Zbl
[22] A. V. Zhuchok and Y. V. Zhuchok, “On two classes of digroups”, Sao Paulo J. Math. Sci., 11 (2017), 240–252 | DOI | MR | Zbl