Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_32_1_a3, author = {S. Mallik and B. Yildiz}, title = {Isodual and self-dual codes from graphs}, journal = {Algebra and discrete mathematics}, pages = {49--64}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/} }
S. Mallik; B. Yildiz. Isodual and self-dual codes from graphs. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/
[1] A. Abiad, W. H. Haemers, “Switched symplectic graphs and their 2-ranks”, Des. Codes Crypt., 81:1 (2016), 35–41 | DOI | MR | Zbl
[2] D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić, “Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs”, Discrete Math., 312:20 (2012), 3000–3010 | DOI | MR | Zbl
[3] D. Crnković, M. Maximović, B. Rodrigues and S. Rukavina, “Self-orthogonal codes from the strongly regular graphs on up to 40 vertices”, Adv. Math. Communications, 10:3 (2016), 555–582 | DOI | MR | Zbl
[4] P. Dankelmann, J. D. Key and B. G. Rodrigues, “A Characterization of Graphs by Codes from their Incidence Matrices”, Elect. J. Combinatorics, 20:3 (2013), 18 | MR
[5] W. Fish, R. Fray and E. Mwambene, “Binary codes from the complements of the triangular graphs”, Quaestiones Mathematicae, 33:4 (2010), 399–408 | DOI | MR | Zbl
[6] G. D. Forney, Codes on Graphs: Fundamentals, arXiv: 1306.6264
[7] C. D. Godsil and G. F. Royle, “Chromatic Number and the 2-Rank of a Graph”, J. Comb. Series B, 81 (2001), 142–149 | DOI | MR | Zbl
[8] M. Grassl and M. Harada, “New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs”, Discrete Math., 340:3 (2017), 399–403 | DOI | MR | Zbl
[9] J. D. Key and B. G. Rodrigues, “LCD codes from adjacency matrices of graphs”, Appl. Alg. Eng. Comm. Comp., 29:3 (2018), 227–244 | DOI | MR | Zbl
[10] K. Kumwenda and E. Mwambene, Codes from graphs related to the categorical product of triangular graphs and $K_n$, IEEE Trans. Inform. Theory Workshop, ITW, Dublin, 2010
[11] S. Mallik and B. L. Shader, “Classes of graphs with minimum skew rank 4”, Linear Algebra Appl., 439 (2013), 3643–3657 | DOI | MR | Zbl
[12] H. Oral, Self-dual Codes and Graphs, Thesis, Simon Frasier University, 1989 | MR
[13] E. M. Rains, “Shadow Bounds for Self Dual Codes”, IEEE Trans. Inf. Theory, 44 (1998), 134–139 | DOI | MR | Zbl
[14] V. Tonchev, “Error-correcting codes from graphs”, Discrete Math., 257:2–3 (2002), 549–557 | DOI | MR | Zbl
[15] V. Tonchev, “Rank-3 Graphs, Block Designs, and Codes with Unequal Symbol Protection”, Problemy Peredaci Informatsii, 17:2 (1981), 89–93 | MR | Zbl