Isodual and self-dual codes from graphs
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 49-64

Voir la notice de l'article provenant de la source Math-Net.Ru

Binary linear codes are constructed from graphs, in particular, by the generator matrix $[I_n\mid A]$ where $A$ is the adjacency matrix of a graph on $n$ vertices. A combinatorial interpretation of the minimum distance of such codes is given. We also present graph theoretic conditions for such linear codes to be Type I and Type II self-dual. Several examples of binary linear codes produced by well-known graph classes are given.
Keywords: self-dual codes, isodual codes, graphs, adjacency matrix, strongly regular graphs.
@article{ADM_2021_32_1_a3,
     author = {S. Mallik and B. Yildiz},
     title = {Isodual and self-dual codes from graphs},
     journal = {Algebra and discrete mathematics},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/}
}
TY  - JOUR
AU  - S. Mallik
AU  - B. Yildiz
TI  - Isodual and self-dual codes from graphs
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 49
EP  - 64
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/
LA  - en
ID  - ADM_2021_32_1_a3
ER  - 
%0 Journal Article
%A S. Mallik
%A B. Yildiz
%T Isodual and self-dual codes from graphs
%J Algebra and discrete mathematics
%D 2021
%P 49-64
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/
%G en
%F ADM_2021_32_1_a3
S. Mallik; B. Yildiz. Isodual and self-dual codes from graphs. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/