Isodual and self-dual codes from graphs
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 49-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Binary linear codes are constructed from graphs, in particular, by the generator matrix $[I_n\mid A]$ where $A$ is the adjacency matrix of a graph on $n$ vertices. A combinatorial interpretation of the minimum distance of such codes is given. We also present graph theoretic conditions for such linear codes to be Type I and Type II self-dual. Several examples of binary linear codes produced by well-known graph classes are given.
Keywords: self-dual codes, isodual codes, graphs, adjacency matrix, strongly regular graphs.
@article{ADM_2021_32_1_a3,
     author = {S. Mallik and B. Yildiz},
     title = {Isodual and self-dual codes from graphs},
     journal = {Algebra and discrete mathematics},
     pages = {49--64},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/}
}
TY  - JOUR
AU  - S. Mallik
AU  - B. Yildiz
TI  - Isodual and self-dual codes from graphs
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 49
EP  - 64
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/
LA  - en
ID  - ADM_2021_32_1_a3
ER  - 
%0 Journal Article
%A S. Mallik
%A B. Yildiz
%T Isodual and self-dual codes from graphs
%J Algebra and discrete mathematics
%D 2021
%P 49-64
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/
%G en
%F ADM_2021_32_1_a3
S. Mallik; B. Yildiz. Isodual and self-dual codes from graphs. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 49-64. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a3/

[1] A. Abiad, W. H. Haemers, “Switched symplectic graphs and their 2-ranks”, Des. Codes Crypt., 81:1 (2016), 35–41 | DOI | MR | Zbl

[2] D. Crnković, B. G. Rodrigues, S. Rukavina and L. Simčić, “Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs”, Discrete Math., 312:20 (2012), 3000–3010 | DOI | MR | Zbl

[3] D. Crnković, M. Maximović, B. Rodrigues and S. Rukavina, “Self-orthogonal codes from the strongly regular graphs on up to 40 vertices”, Adv. Math. Communications, 10:3 (2016), 555–582 | DOI | MR | Zbl

[4] P. Dankelmann, J. D. Key and B. G. Rodrigues, “A Characterization of Graphs by Codes from their Incidence Matrices”, Elect. J. Combinatorics, 20:3 (2013), 18 | MR

[5] W. Fish, R. Fray and E. Mwambene, “Binary codes from the complements of the triangular graphs”, Quaestiones Mathematicae, 33:4 (2010), 399–408 | DOI | MR | Zbl

[6] G. D. Forney, Codes on Graphs: Fundamentals, arXiv: 1306.6264

[7] C. D. Godsil and G. F. Royle, “Chromatic Number and the 2-Rank of a Graph”, J. Comb. Series B, 81 (2001), 142–149 | DOI | MR | Zbl

[8] M. Grassl and M. Harada, “New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs”, Discrete Math., 340:3 (2017), 399–403 | DOI | MR | Zbl

[9] J. D. Key and B. G. Rodrigues, “LCD codes from adjacency matrices of graphs”, Appl. Alg. Eng. Comm. Comp., 29:3 (2018), 227–244 | DOI | MR | Zbl

[10] K. Kumwenda and E. Mwambene, Codes from graphs related to the categorical product of triangular graphs and $K_n$, IEEE Trans. Inform. Theory Workshop, ITW, Dublin, 2010

[11] S. Mallik and B. L. Shader, “Classes of graphs with minimum skew rank 4”, Linear Algebra Appl., 439 (2013), 3643–3657 | DOI | MR | Zbl

[12] H. Oral, Self-dual Codes and Graphs, Thesis, Simon Frasier University, 1989 | MR

[13] E. M. Rains, “Shadow Bounds for Self Dual Codes”, IEEE Trans. Inf. Theory, 44 (1998), 134–139 | DOI | MR | Zbl

[14] V. Tonchev, “Error-correcting codes from graphs”, Discrete Math., 257:2–3 (2002), 549–557 | DOI | MR | Zbl

[15] V. Tonchev, “Rank-3 Graphs, Block Designs, and Codes with Unequal Symbol Protection”, Problemy Peredaci Informatsii, 17:2 (1981), 89–93 | MR | Zbl