Common neighborhood spectrum of commuting graphs of finite groups
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The commuting graph of a finite non-abelian group $G$ with center $Z(G)$, denoted by $\Gamma_c(G)$, is a simple undirected graph whose vertex set is $G\setminus Z(G)$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy = yx$. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.
Keywords: commuting graph, spectrum, integral graph, finite group.
@article{ADM_2021_32_1_a2,
     author = {W. N. Fasfous and R. Sharafdini and R. K. Nath},
     title = {Common neighborhood spectrum of commuting graphs of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/}
}
TY  - JOUR
AU  - W. N. Fasfous
AU  - R. Sharafdini
AU  - R. K. Nath
TI  - Common neighborhood spectrum of commuting graphs of finite groups
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 33
EP  - 48
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/
LA  - en
ID  - ADM_2021_32_1_a2
ER  - 
%0 Journal Article
%A W. N. Fasfous
%A R. Sharafdini
%A R. K. Nath
%T Common neighborhood spectrum of commuting graphs of finite groups
%J Algebra and discrete mathematics
%D 2021
%P 33-48
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/
%G en
%F ADM_2021_32_1_a2
W. N. Fasfous; R. Sharafdini; R. K. Nath. Common neighborhood spectrum of commuting graphs of finite groups. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/

[1] A. Abdollahi, S. Akbari and H. R. Maimani, “Non-commuting graph of a group”, J. Algebra, 298 (2006), 468–492 | DOI | MR | Zbl

[2] A. Abdollahi, S. M. Jafarain and A. M. Hassanabadi, “Groups with specific number of centralizers”, Houston J. Math., 33:1 (2007), 43–57 | MR | Zbl

[3] M. Afkhami, M. Farrokhi D. G. and K. Khashyarmanesh, “Planar, toroidal, and projective commuting and non-commuting graphs”, Comm. Algebra, 43:7 (2015), 2964–2970 | DOI | MR | Zbl

[4] A. Alwardi, N. D. Soner and I. Gutman, “On the common-neighborhood energy of a graph”, Bulletin T.CXLIII de l'Académie serbe des sciences et des arts, 36 (2011), 49–59 | MR | Zbl

[5] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, “On the diameters of commuting graphs”, Linear Algebra Appl., 418 (2006), 161–176 | DOI | MR | Zbl

[6] A. R. Ashrafi, “On finite groups with a given number of centralizers”, Algebra Colloq., 7:2 (2000), 139–146 | DOI | MR | Zbl

[7] S. M. Belcastro and G. J. Sherman, “Counting centralizers in finite groups”, Math. Magazine, 67:5 (1994), 366–374 | DOI | MR | Zbl

[8] A. Castelaz, Commutativity degree of finite groups, M.A. thesis, Wake Forest University, 2010

[9] A. K. Das, R. K. Nath and M. R. Pournaki, “A survey on the estimation of commutativity in finite groups”, Southeast Asian Bull. Math., 37:2 (2013), 161–180 | MR | Zbl

[10] A. K. Das and D. Nongsiang, “On the genus of the commuting graphs of finite non-abelian groups”, Int. Electron. J. Algebra, 19 (2016), 91–109 | DOI | MR | Zbl

[11] J. Dutta, A study of finite groups in terms of their centralizers, M. Phil. thesis, North-Eastern Hill University, 2010

[12] J. Dutta and R. K. Nath, “Spectrum of commuting graphs of some classes of finite groups”, Matematika, 33:1 (2017), 87–95 | DOI | MR

[13] J. Dutta and R. K. Nath, “Finite groups whose commuting graphs are integral”, Mat. Vesnik, 69:3 (2017), 226–230 | MR | Zbl

[14] J. Dutta and R. K. Nath, “Laplacian and signless Laplacian spectrum of commuting graphs of finite groups”, Khayyam J. Math., 4:1 (2018), 77–87 | MR | Zbl

[15] P. Erdös and P. Turán, “On some problems of a statistical group-theory IV”, Acta. Math. Acad. Sci. Hungar., 19 (1968), 413–435 | DOI | MR | Zbl

[16] A. Iranmanesh and A. Jafarzadeh, “Characterization of finite groups by their commuting graph”, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 23:1 (2007), 7–13 | MR | Zbl

[17] D. MacHale, “How commutative can a non-commutative group be?”, Math. Gaz., 58 (1974), 199–202 | DOI | MR | Zbl

[18] G. L. Morgan and C. W. Parker, “The diameter of the commuting graph of a finite group with trivial center”, J. Algebra, 393:1 (2013), 41–59 | DOI | MR | Zbl

[19] R. K. Nath, Commutativity degrees of finite groups – a survey, M. Phil. thesis, North-Eastern Hill University, 2008 | Zbl

[20] R. K. Nath, “Commutativity degree of a class of finite groups and consequences”, Bull. Aust. Math. Soc., 88:3 (2013), 448–452 | DOI | MR | Zbl

[21] R. K. Nath, “Various specta of commuting graphs $n$-centralizer finite groups”, Int. J. Eng. Science Tech., 10:2S (2018), 170–172 | DOI

[22] R. K. Nath and A. K. Das, “On a lower bound of commutativity degree”, Rend. Circ. Math. Palermo, 59:1 (2010), 137–141 | DOI | MR

[23] C. Parker, “The commuting graph of a soluble group”, Bull. London Math. Soc., 45:4 (2013), 839–848 | DOI | MR | Zbl

[24] D. J. Rusin, “What is the probability that two elements of a finite group commute?”, Pacific J. Math., 82:1 (1979), 237–247 | DOI | MR | Zbl