Common neighborhood spectrum of commuting graphs of finite groups
Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 33-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The commuting graph of a finite non-abelian group $G$ with center $Z(G)$, denoted by $\Gamma_c(G)$, is a simple undirected graph whose vertex set is $G\setminus Z(G)$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy = yx$. In this paper, we compute the common neighborhood spectrum of commuting graphs of several classes of finite non-abelian groups and conclude that these graphs are CN-integral.
Keywords: commuting graph, spectrum, integral graph, finite group.
@article{ADM_2021_32_1_a2,
     author = {W. N. Fasfous and R. Sharafdini and R. K. Nath},
     title = {Common neighborhood spectrum of commuting graphs of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/}
}
TY  - JOUR
AU  - W. N. Fasfous
AU  - R. Sharafdini
AU  - R. K. Nath
TI  - Common neighborhood spectrum of commuting graphs of finite groups
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 33
EP  - 48
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/
LA  - en
ID  - ADM_2021_32_1_a2
ER  - 
%0 Journal Article
%A W. N. Fasfous
%A R. Sharafdini
%A R. K. Nath
%T Common neighborhood spectrum of commuting graphs of finite groups
%J Algebra and discrete mathematics
%D 2021
%P 33-48
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/
%G en
%F ADM_2021_32_1_a2
W. N. Fasfous; R. Sharafdini; R. K. Nath. Common neighborhood spectrum of commuting graphs of finite groups. Algebra and discrete mathematics, Tome 32 (2021) no. 1, pp. 33-48. http://geodesic.mathdoc.fr/item/ADM_2021_32_1_a2/