Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_31_2_a8, author = {O. Tout}, title = {The center of the wreath product of symmetric group algebras}, journal = {Algebra and discrete mathematics}, pages = {302--322}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/} }
O. Tout. The center of the wreath product of symmetric group algebras. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 302-322. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/
[1] H. Farahat, G. Higman, “The centres of symmetric group rings”, Proc. Roy. Soc. (A), 250 (1959), 212–221 | MR | Zbl
[2] L. Geissinger, D. Kinch, “Representations of the hyperoctahedral groups”, Journal of Algebra, 53:1 (1978), 1–20 | DOI | MR | Zbl
[3] V. Ivanov, S. Kerov, “The algebra of conjugacy classes in symmetric groups, and partial permutations”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 256:3 (1999), 95–120 | MR | Zbl
[4] A. Kerber, Representations of Permutation Groups, v. I, Lecture Notes in Mathematics, 240, Representations of Wreath Products and Applications to the Representation Theory of Symmetric and Alternating Groups, Springer, 2006
[5] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford Univ. Press, 1995 | MR | Zbl
[6] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Humboldt-Universität zu Berlin, 1932
[7] J. R. Stembridge, “The projective representations of the hyperoctahedral group”, Journal of Algebra, 145:2 (1992), 396–453 | DOI | MR | Zbl
[8] O. Tout, Polynomiality of the structure coefficients of double-class algebras, Theses, Université de Bordeaux, 2014
[9] O. Tout, “Structure coefficients of the {H}ecke algebra of $({S}_{2n}, {B}_n)$”, The Electronic Journal of Combinatorics, 21:4 (2014), 4–35 | DOI | MR | Zbl
[10] O. Tout, “A general framework for the polynomiality property of the structure coefficients of double-class algebras”, Journal of Algebraic Combinatorics, 45:4 (2017), 1111–1152 | DOI | MR | Zbl
[11] O. Tout, “$k$-partial permutations and the center of the wreath product $\mathcal{S}_k\wr\mathcal{S}_n$ algebra”, Journal of Algebraic Combinatorics, 53:2 (2021), 389–412 | DOI | MR | Zbl
[12] W. Wang, “The Farahat–Higman ring of wreath products and Hilbert schemes”, Advances in Mathematics, 187:2 (2004), 417–446 | DOI | MR | Zbl