The center of the wreath product of symmetric group algebras
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 302-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.
Keywords: symmetric groups, wreath products, centers of finite groups algebras.
Mots-clés : structure coefficients
@article{ADM_2021_31_2_a8,
     author = {O. Tout},
     title = {The center of the wreath product of symmetric group algebras},
     journal = {Algebra and discrete mathematics},
     pages = {302--322},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/}
}
TY  - JOUR
AU  - O. Tout
TI  - The center of the wreath product of symmetric group algebras
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 302
EP  - 322
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/
LA  - en
ID  - ADM_2021_31_2_a8
ER  - 
%0 Journal Article
%A O. Tout
%T The center of the wreath product of symmetric group algebras
%J Algebra and discrete mathematics
%D 2021
%P 302-322
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/
%G en
%F ADM_2021_31_2_a8
O. Tout. The center of the wreath product of symmetric group algebras. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 302-322. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/

[1] H. Farahat, G. Higman, “The centres of symmetric group rings”, Proc. Roy. Soc. (A), 250 (1959), 212–221 | MR | Zbl

[2] L. Geissinger, D. Kinch, “Representations of the hyperoctahedral groups”, Journal of Algebra, 53:1 (1978), 1–20 | DOI | MR | Zbl

[3] V. Ivanov, S. Kerov, “The algebra of conjugacy classes in symmetric groups, and partial permutations”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 256:3 (1999), 95–120 | MR | Zbl

[4] A. Kerber, Representations of Permutation Groups, v. I, Lecture Notes in Mathematics, 240, Representations of Wreath Products and Applications to the Representation Theory of Symmetric and Alternating Groups, Springer, 2006

[5] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd edition, Oxford Univ. Press, 1995 | MR | Zbl

[6] W. Specht, Eine Verallgemeinerung der symmetrischen Gruppe, Humboldt-Universität zu Berlin, 1932

[7] J. R. Stembridge, “The projective representations of the hyperoctahedral group”, Journal of Algebra, 145:2 (1992), 396–453 | DOI | MR | Zbl

[8] O. Tout, Polynomiality of the structure coefficients of double-class algebras, Theses, Université de Bordeaux, 2014

[9] O. Tout, “Structure coefficients of the {H}ecke algebra of $({S}_{2n}, {B}_n)$”, The Electronic Journal of Combinatorics, 21:4 (2014), 4–35 | DOI | MR | Zbl

[10] O. Tout, “A general framework for the polynomiality property of the structure coefficients of double-class algebras”, Journal of Algebraic Combinatorics, 45:4 (2017), 1111–1152 | DOI | MR | Zbl

[11] O. Tout, “$k$-partial permutations and the center of the wreath product $\mathcal{S}_k\wr\mathcal{S}_n$ algebra”, Journal of Algebraic Combinatorics, 53:2 (2021), 389–412 | DOI | MR | Zbl

[12] W. Wang, “The Farahat–Higman ring of wreath products and Hilbert schemes”, Advances in Mathematics, 187:2 (2004), 417–446 | DOI | MR | Zbl