The center of the wreath product of symmetric group algebras
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 302-322

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.
Keywords: symmetric groups, wreath products, centers of finite groups algebras.
Mots-clés : structure coefficients
@article{ADM_2021_31_2_a8,
     author = {O. Tout},
     title = {The center of the wreath product of symmetric group algebras},
     journal = {Algebra and discrete mathematics},
     pages = {302--322},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/}
}
TY  - JOUR
AU  - O. Tout
TI  - The center of the wreath product of symmetric group algebras
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 302
EP  - 322
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/
LA  - en
ID  - ADM_2021_31_2_a8
ER  - 
%0 Journal Article
%A O. Tout
%T The center of the wreath product of symmetric group algebras
%J Algebra and discrete mathematics
%D 2021
%P 302-322
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/
%G en
%F ADM_2021_31_2_a8
O. Tout. The center of the wreath product of symmetric group algebras. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 302-322. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a8/