Semisymmetric $Z_{p}$-covers of the $C20$ graph
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 286-301

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $ X$ is said to be $G$-semisymmetric if it is regular and there exists a subgroup $G$ of $A := \operatorname{Aut}(X)$ acting transitively on its edge set but not on its vertex set. In the case of $G = A$, we call $ X$ a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric $z_{p}$-covers of the $C20$ graph.
Keywords: invariant subspaces, homology group, $C20$ graph, semisymmetric graphs, regular covering, lifting automorphisms.
@article{ADM_2021_31_2_a7,
     author = {A. A. Talebi and N. Mehdipoor},
     title = {Semisymmetric $Z_{p}$-covers of the $C20$ graph},
     journal = {Algebra and discrete mathematics},
     pages = {286--301},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/}
}
TY  - JOUR
AU  - A. A. Talebi
AU  - N. Mehdipoor
TI  - Semisymmetric $Z_{p}$-covers of the $C20$ graph
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 286
EP  - 301
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/
LA  - en
ID  - ADM_2021_31_2_a7
ER  - 
%0 Journal Article
%A A. A. Talebi
%A N. Mehdipoor
%T Semisymmetric $Z_{p}$-covers of the $C20$ graph
%J Algebra and discrete mathematics
%D 2021
%P 286-301
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/
%G en
%F ADM_2021_31_2_a7
A. A. Talebi; N. Mehdipoor. Semisymmetric $Z_{p}$-covers of the $C20$ graph. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/