Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_31_2_a7, author = {A. A. Talebi and N. Mehdipoor}, title = {Semisymmetric $Z_{p}$-covers of the $C20$ graph}, journal = {Algebra and discrete mathematics}, pages = {286--301}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/} }
A. A. Talebi; N. Mehdipoor. Semisymmetric $Z_{p}$-covers of the $C20$ graph. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/
[1] R. A. Beezer, Sage for Linear Algebra A Supplement to a First course in Linear Algebra, 2011 http://www.sagemath.org
[2] I. Z. Bouwer, “An edge but not vertex transitive cubic graph”, Bull. Can. Math. Soc., 11 (1968), 533–535 | DOI | MR | Zbl
[3] I. Z. Bouwer, “On edge but not vertex transitive regular graphs”, J. Combin. Theory, B, 12 (1972), 32–40 | DOI | MR | Zbl
[4] M. Conder, Malnič, D. Marušič and P. Potočnik, “A census of semisymmetric cubic graphs on up to $768$ vertices”, J. Algebraic Combin., 23 (2006), 255–294 | DOI | MR | Zbl
[5] S. F. Du and M. Y. Xu, “Lifting of automorphisms on the elementary abelian regular covering”, Linear Algebra Appl., 373 (2003), 101–119 | DOI | MR | Zbl
[6] Y. Q. Feng, J. H. Kwak and K. Wang, “Classifying cubic symmetric graphs of order $8p$ or $8p^{2}$”, European J. Combin., 26 (2005), 1033–1052 | DOI | MR | Zbl
[7] J. Folkman, “Regular line-symmetric graphs”, J. Combin. Theory, 3 (1967), 215–232 | DOI | MR | Zbl
[8] J. L. Gross and T. W. Tucker, “Generating all graph coverings by permutation voltage assignments”, Discrete Math., 18 (1977), 273–283 | DOI | MR | Zbl
[9] A. Imani, N. Mehdipoor and A. A. Talebi, “On application of linear algebra in classification cubic $s$-regular graphs of order $28p$”, Algebra Discrete Math., 25 (2018), 56–72 | MR | Zbl
[10] M. E. Iofinova and A. A. Ivanov, “Biprimitive cubic graphs”, An investigation in algebraic theory of combinatorial objects, Institute for System Studies, Moscow, 1985, 124–134 (in Russian) | MR
[11] A. V. Ivanov, “On edge but not vertex transitive regular graphs”, Comb. Annals Discrete Math., 34 (1987), 273–286 | MR
[12] M. L. Klin, “On edge but not vertex transitive regular graphs”, Algebric methods in graph theory, Colloq-Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam, 1981, 399–403 | MR
[13] Z. Lu, C. Q. Wang and M. Y. Xu, “On semisymmetric cubic graphs of order $6p^{2}$”, Sci. China Ser. A Math., 47 (2004), 11–17 | MR
[14] A. Malnic, “Group actions, covering and lifts of automorphisms”, Discrete Math., 182 (1998), 203–218 | DOI | MR | Zbl
[15] A. Malnič, D. Marušič and P. Potočnik, “On cubic graphs admitting an edge-transitive solvable group”, J. Algebraic Combin., 20 (2004), 99–113 | DOI | MR | Zbl
[16] A. Malnič, D. Marušič and P. Potočnik, “Elementary abelian covers of graphs”, J. Algebraic Combin., 20 (2004), 71–97 | DOI | MR | Zbl
[17] A. Malnič, D. Marušič and P. Potočnik, “Semisymmetric elementary abelian covers of the M$\ddot{o}$bius-Kantor”, Discrete Math., 307 (2007), 2156–2175 | DOI | MR | Zbl
[18] A. Malnič, D. Marušič and C. Q. Wang, “Cubic edge-transitive graphs of order $2p^{3}$”, Discrete Math., 274 (2004), 187–198 | DOI | MR | Zbl
[19] D. Marušič, “Constructing cubic edge- but not vertex-transitive graphs”, J. Graph Theory, 35 (2000), 152–160 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] C. W. Parker, “Semisymmetric cubic graphs of twice odd order”, Eur. J. Combin., 28 (2007), 572–591 | DOI | MR | Zbl
[21] P. Potočnik and S. Wilson, A Census of edge-transitive tetravalent graphs http://jan.ucc.nau.edu/s̃wilson/C4Site/index.html
[22] M. Skoviera, “A construction to the theory of voltage groups”, Discrete Math., 61 (1986), 281–292 | DOI | MR | Zbl
[23] A. A. Talebi and N.Mehdipoor, “Classifying cubic s-regular graphs of orders $22p$, $22p^2$”, Algebra Discrete Math., 16 (2013), 293–298 | MR | Zbl
[24] A. A. Talebi and N.Mehdipoor, “Classifying Cubic Semisymmetric Graphs of Order $18 p^n$”, Graphs and Combinatorics | DOI | MR
[25] C. Q. Wang and T. S. Chen, “Semisymmetric cubic graphs as regular covers of $K_{3,3}$”, Acta Math. Sinica, English Ser., 24 (2008), 405–416 | DOI | MR | Zbl