Semisymmetric $Z_{p}$-covers of the $C20$ graph
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 286-301.

Voir la notice de l'article provenant de la source Math-Net.Ru

A graph $ X$ is said to be $G$-semisymmetric if it is regular and there exists a subgroup $G$ of $A := \operatorname{Aut}(X)$ acting transitively on its edge set but not on its vertex set. In the case of $G = A$, we call $ X$ a semisymmetric graph. Finding elementary abelian covering projections can be grasped combinatorially via a linear representation of automorphisms acting on the first homology group of the graph. The method essentially reduces to finding invariant subspaces of matrix groups over prime fields. In this study, by applying concept linear algebra, we classify the connected semisymmetric $z_{p}$-covers of the $C20$ graph.
Keywords: invariant subspaces, homology group, $C20$ graph, semisymmetric graphs, regular covering, lifting automorphisms.
@article{ADM_2021_31_2_a7,
     author = {A. A. Talebi and N. Mehdipoor},
     title = {Semisymmetric $Z_{p}$-covers of the $C20$ graph},
     journal = {Algebra and discrete mathematics},
     pages = {286--301},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/}
}
TY  - JOUR
AU  - A. A. Talebi
AU  - N. Mehdipoor
TI  - Semisymmetric $Z_{p}$-covers of the $C20$ graph
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 286
EP  - 301
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/
LA  - en
ID  - ADM_2021_31_2_a7
ER  - 
%0 Journal Article
%A A. A. Talebi
%A N. Mehdipoor
%T Semisymmetric $Z_{p}$-covers of the $C20$ graph
%J Algebra and discrete mathematics
%D 2021
%P 286-301
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/
%G en
%F ADM_2021_31_2_a7
A. A. Talebi; N. Mehdipoor. Semisymmetric $Z_{p}$-covers of the $C20$ graph. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 286-301. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a7/

[1] R. A. Beezer, Sage for Linear Algebra A Supplement to a First course in Linear Algebra, 2011 http://www.sagemath.org

[2] I. Z. Bouwer, “An edge but not vertex transitive cubic graph”, Bull. Can. Math. Soc., 11 (1968), 533–535 | DOI | MR | Zbl

[3] I. Z. Bouwer, “On edge but not vertex transitive regular graphs”, J. Combin. Theory, B, 12 (1972), 32–40 | DOI | MR | Zbl

[4] M. Conder, Malnič, D. Marušič and P. Potočnik, “A census of semisymmetric cubic graphs on up to $768$ vertices”, J. Algebraic Combin., 23 (2006), 255–294 | DOI | MR | Zbl

[5] S. F. Du and M. Y. Xu, “Lifting of automorphisms on the elementary abelian regular covering”, Linear Algebra Appl., 373 (2003), 101–119 | DOI | MR | Zbl

[6] Y. Q. Feng, J. H. Kwak and K. Wang, “Classifying cubic symmetric graphs of order $8p$ or $8p^{2}$”, European J. Combin., 26 (2005), 1033–1052 | DOI | MR | Zbl

[7] J. Folkman, “Regular line-symmetric graphs”, J. Combin. Theory, 3 (1967), 215–232 | DOI | MR | Zbl

[8] J. L. Gross and T. W. Tucker, “Generating all graph coverings by permutation voltage assignments”, Discrete Math., 18 (1977), 273–283 | DOI | MR | Zbl

[9] A. Imani, N. Mehdipoor and A. A. Talebi, “On application of linear algebra in classification cubic $s$-regular graphs of order $28p$”, Algebra Discrete Math., 25 (2018), 56–72 | MR | Zbl

[10] M. E. Iofinova and A. A. Ivanov, “Biprimitive cubic graphs”, An investigation in algebraic theory of combinatorial objects, Institute for System Studies, Moscow, 1985, 124–134 (in Russian) | MR

[11] A. V. Ivanov, “On edge but not vertex transitive regular graphs”, Comb. Annals Discrete Math., 34 (1987), 273–286 | MR

[12] M. L. Klin, “On edge but not vertex transitive regular graphs”, Algebric methods in graph theory, Colloq-Math. Soc. Janos Bolyai, 25, North-Holland, Amsterdam, 1981, 399–403 | MR

[13] Z. Lu, C. Q. Wang and M. Y. Xu, “On semisymmetric cubic graphs of order $6p^{2}$”, Sci. China Ser. A Math., 47 (2004), 11–17 | MR

[14] A. Malnic, “Group actions, covering and lifts of automorphisms”, Discrete Math., 182 (1998), 203–218 | DOI | MR | Zbl

[15] A. Malnič, D. Marušič and P. Potočnik, “On cubic graphs admitting an edge-transitive solvable group”, J. Algebraic Combin., 20 (2004), 99–113 | DOI | MR | Zbl

[16] A. Malnič, D. Marušič and P. Potočnik, “Elementary abelian covers of graphs”, J. Algebraic Combin., 20 (2004), 71–97 | DOI | MR | Zbl

[17] A. Malnič, D. Marušič and P. Potočnik, “Semisymmetric elementary abelian covers of the M$\ddot{o}$bius-Kantor”, Discrete Math., 307 (2007), 2156–2175 | DOI | MR | Zbl

[18] A. Malnič, D. Marušič and C. Q. Wang, “Cubic edge-transitive graphs of order $2p^{3}$”, Discrete Math., 274 (2004), 187–198 | DOI | MR | Zbl

[19] D. Marušič, “Constructing cubic edge- but not vertex-transitive graphs”, J. Graph Theory, 35 (2000), 152–160 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[20] C. W. Parker, “Semisymmetric cubic graphs of twice odd order”, Eur. J. Combin., 28 (2007), 572–591 | DOI | MR | Zbl

[21] P. Potočnik and S. Wilson, A Census of edge-transitive tetravalent graphs http://jan.ucc.nau.edu/s̃wilson/C4Site/index.html

[22] M. Skoviera, “A construction to the theory of voltage groups”, Discrete Math., 61 (1986), 281–292 | DOI | MR | Zbl

[23] A. A. Talebi and N.Mehdipoor, “Classifying cubic s-regular graphs of orders $22p$, $22p^2$”, Algebra Discrete Math., 16 (2013), 293–298 | MR | Zbl

[24] A. A. Talebi and N.Mehdipoor, “Classifying Cubic Semisymmetric Graphs of Order $18 p^n$”, Graphs and Combinatorics | DOI | MR

[25] C. Q. Wang and T. S. Chen, “Semisymmetric cubic graphs as regular covers of $K_{3,3}$”, Acta Math. Sinica, English Ser., 24 (2008), 405–416 | DOI | MR | Zbl