Semi-lattice of varieties of quasigroups with linearity
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 261-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

A $\sigma$-parastrophe of a class of quasigroups $\mathfrak{A}$ is a class ${^{\sigma}\mathfrak{A}}$ of all $\sigma$-parastrophes of quasigroups from $\mathfrak{A}$. A set of all pairwise parastrophic classes is called a parastrophic orbit or a truss. A parastrophically closed semi-lattice of classes is a bunch. A linearity bunch is a set of varieties which contains the variety of all left linear quasigroups, the variety of all left alinear quasigroups, all their parastrophes and all their intersections. It contains 14 varieties, which are distributed into six parastrophic orbits. All quasigroups from these varieties are called dilinear. To obtain all varieties from the bunch, concepts of middle linearity and middle alinearity are introduced. A well-known identity or a system of identities which describes a variety from every parastrophic orbit of the bunch is cited. An algorithm for obtaining identities which describe all varieties from the parastrophic orbits is given. Examples of quasigroups distinguishing one variety from the other are presented.
Keywords: identity, parastrophic symmetry, parastrophic orbit, truss, bunch, left, right, middle linearity, alinearity, semi-central, semi-linear, semi-alinear, linear, alinear variety.
Mots-clés : quasigroup, parastrophe, central
@article{ADM_2021_31_2_a6,
     author = {F. M. Sokhatsky and H. V. Krainichuk and V. A. Sydoruk},
     title = {Semi-lattice of varieties of quasigroups with linearity},
     journal = {Algebra and discrete mathematics},
     pages = {261--285},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a6/}
}
TY  - JOUR
AU  - F. M. Sokhatsky
AU  - H. V. Krainichuk
AU  - V. A. Sydoruk
TI  - Semi-lattice of varieties of quasigroups with linearity
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 261
EP  - 285
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a6/
LA  - en
ID  - ADM_2021_31_2_a6
ER  - 
%0 Journal Article
%A F. M. Sokhatsky
%A H. V. Krainichuk
%A V. A. Sydoruk
%T Semi-lattice of varieties of quasigroups with linearity
%J Algebra and discrete mathematics
%D 2021
%P 261-285
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a6/
%G en
%F ADM_2021_31_2_a6
F. M. Sokhatsky; H. V. Krainichuk; V. A. Sydoruk. Semi-lattice of varieties of quasigroups with linearity. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 261-285. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a6/

[1] V. D. Belousov, “Balanced identities in quasigroups”, Mat. Sb, 70(112):1 (1966), 55–97 | MR | Zbl

[2] V. D. Belousov, Foundation of the theory of quasigroups and loops, Nauka, Moscow, 1967, 222 pp. (in Russian) | MR

[3] G. B. Belyavskaya, “Abelian quasigroups are T-quasigroups”, Quasigroups and related systems, 1:1 (1994), 1–7 | MR | Zbl

[4] G. B. Belyavskaya, Quasigroups: Identities with permutations, linearity and nuclei, LAP, Germany, 2013 (in Russian) | Zbl

[5] G. B. Belyavskaya, “Parastrophically equivalent identities characterizing quasigroups isotopic to abelian groups”, Quasigroups and related systems, 1:22 (2014), 19–32 | MR | Zbl

[6] G. B. Belyavskaya, A. Kh. Tabarov, “Homomorphisms and endomorphisms of linear and alinear quasigroups”, Discrete Math. Appl., 17:3 (2007), 253–260 | MR

[7] G. B. Belyavskaya, A. Kh. Tabarov, “Characteristic of linear and alinear quasigroups”, Diskretnaya matematika, 4:2 (1992), 142–147 (in Russian) | MR | Zbl

[8] G. B. Belyavskaya, “T-quasigroups and center of quasigroups”, Matem. issledov. Kishinev:Ştiinţa, III (1989), 24–43 | MR

[9] R. Freese, R. McKenzie, Commutator Theory for Congruence Modular Varieties London Math. Soc. Lecture Notes, Ser. 125, 1987 | MR

[10] Jan Galuszka, “Codes of groupoids with one-sided quasigroup conditions”, Algebra Discrete Math., 8:2 (2009), 27–44 | MR

[11] Jan Galuszka, “Lattices of classes of groupoids with one-sided quasigroup conditions”, Algebra Discrete Math., 9:1 (2010), 31–40 | MR

[12] J. Jezek and T. Kepka, “Quasigroups isotopic to a group”, Comment Math. Univ. Carol, 1:16 (1975), 59–76 | MR

[13] T. Kepka, P. Němec, “T-quasigroups. I.”, Acta Univ. Carol., Math. Phys., 12:1 (1971), 39–49 | MR

[14] T. Kepka, P. Němec, “T-quasigroups. II”, Acta Univ. Carol., Math. Phys., 12:2 (1971), 31–49 | MR

[15] H. V. Krainichuk, “Classification of group isotopes according to their symmetry groups”, Acta Universitatis Lodziensis. Folia Mathematica, 19:1 (2017), 84–98 | MR | Zbl

[16] A. Marini, V. Shcherbacov, “On autotopies and automorphisms of n-ary linear quasigroups”, Algebra Discrete Math., 3:2 (2004), 59–83 | MR

[17] V. A. Shcherbacov, Elements of Quasigroup Theory and Applications, Chapman and Hall/CRC, 2017 | MR

[18] J. D. H. Smith, “Groups, triality and hyperquasigroups”, J. Pure Appl. Algebra, 216:4 (2012), 811–825 | DOI | MR | Zbl

[19] F. M. Sokhatsky, “On clasification of functional equations on quasigroups”, Ukrainian Math. Journal, 56:9 (2004), 1259–1266 (in Ukrainian) | MR

[20] F. M. Sokhatsky, “Parastrophic symmetry in quasigroup theory”, Visnyk DonNU, Ser. A. Natural Sciences: Math., 2016, 72–85

[21] F. M. Sokhatsky, “Symmetry in quasigroup and loop theory”, 3rd Mile High Conf. on Nonassoc. Math., Denver, Colorado, USA, August 2013, 11–17

[22] F. N. Sokhatskii, “About group isotopes I”, Ukrainian Math. J., 47:10 (1995), 1585–1598 | DOI | MR

[23] F. N. Sokhatskii, “About of group isotopes II”, Ukrainian Math. J., 47:12 (1995), 1935–1948 | DOI | MR

[24] F. N. Sokhatskii, “About of group isotopes III”, Ukrainian Math. J., 48:2 (1996), 251–259 | DOI | MR

[25] F. Sokhatskyj, P. Syvakivskyj, “On linear isotopes of cyclic groups”, Quasigroups and related systems, 1:1 (1994), 66–76 | MR

[26] D. Stanovský, P. Vojtěchovský, “Central and medial quasigroups of small order”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 80:1 (2016), 24–40 | MR | Zbl

[27] A. K. Sushkevich, Generalized group theory, Kyiv, 1937

[28] A. Kh. Tabarov, Identities and linearity of quasigroups, Dissertation for the degree of Doctor in Physical and Mathematical Sciences, Moscow State University, Moscow, 2009 (in Russian)

[29] A. Kh. Tabarov, Kernels, Linearity and Balanced Identities in Quasigroups, Dissertation for the degree of Candidate in Physical and Mathematical Sciences, Academy of Sciences of the Republic of Moldova, Institute of Mathematics, Chisinau, 1992 (in Russian) | Zbl