Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_31_2_a5, author = {N. P. Puspita and I. E. Wijayanti and B. Surodjo}, title = {Clean coalgebras and clean comodules of finitely generated projective modules}, journal = {Algebra and discrete mathematics}, pages = {251--260}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/} }
TY - JOUR AU - N. P. Puspita AU - I. E. Wijayanti AU - B. Surodjo TI - Clean coalgebras and clean comodules of finitely generated projective modules JO - Algebra and discrete mathematics PY - 2021 SP - 251 EP - 260 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/ LA - en ID - ADM_2021_31_2_a5 ER -
%0 Journal Article %A N. P. Puspita %A I. E. Wijayanti %A B. Surodjo %T Clean coalgebras and clean comodules of finitely generated projective modules %J Algebra and discrete mathematics %D 2021 %P 251-260 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/ %G en %F ADM_2021_31_2_a5
N. P. Puspita; I. E. Wijayanti; B. Surodjo. Clean coalgebras and clean comodules of finitely generated projective modules. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 251-260. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/
[1] Nicholson W K., “Lifting Idempotents and Exchange Rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl
[2] Warfield, Jr., R. B., “Exchange rings and decompositions of modules”, Math. Ann., 199 (1972), 31–36 | DOI | MR | Zbl
[3] Crawley, P., and Jónnson, B., “Refinements for Infinite Direct Decompositions Algebraic System”, Pacific J. Math., 14 (1964), 797–855 | DOI | MR | Zbl
[4] Camillo V P., and Yu H. P., “Exchange Rings, Units and Idempotents”, Comm. Algebra, 22:12 (1994), 4737–4749 | DOI | MR | Zbl
[5] Han, J., and Nicholson W. K., “Extension of Clean Rings”, Comm. Algebra, 29:6 (2001), 2589–2595 | DOI | MR | Zbl
[6] Anderson D. D., and Camillo V. P., “Commutative Rings Whose Element are a sum of a Unit and Idempotent”, Comm. Algebra, 30:7 (2002), 3327–3336 | DOI | MR | Zbl
[7] Tousi, M., and Yassemi, S., “Tensor Product of Clean Rings”, Glasgow Math. J., 47 (2005), 501–503 | DOI | MR | Zbl
[8] McGovern W. Wm., “Characterization of commutative clean rings”, Int. J. Math. Game Theory Algebra, 15:40 (2006), 403–413 | MR | Zbl
[9] Chen, H., and Chen, M., “On Clean Ideals”, IJMMS, 62 (2002), 3949–3956 | MR
[10] Nicholson W. K., and Varadarajan K., “Countable Linear Transformations are Clean”, Proceedings of American Mathematical Socienty, 126 (1998), 61–64 | DOI | MR | Zbl
[11] Scarcoid M. O., “Perturbation the Linear Transformation By Idempotent”, Irish Math. Soc. Bull., 39 (1997), 10–13 | DOI | MR
[12] Nicholson W. K., Varadarajan K. and Zhou Y., “Clean Endomorphism Rings”, Archiv der Mathematik, 83 (2004), 340–343 | DOI | MR | Zbl
[13] Camillo V. P., Khurana, D., Lam T. Y., Nicholson W. K. and Zhou Y., “Continous Modules are Clean”, J. Algebra, 304 (2006), 94–111 | DOI | MR | Zbl
[14] Camillo V. P., Khurana, D., Lam T. Y., Nicholson W. K. and Zhou Y., “A Short Proof that Continous Modules are Clean”, Proceedings of the Sixth China-Japan-Korea International Conference on Ring Theory, Contemporary Ring Theory 2011, 2012, 165–169 | MR | Zbl
[15] Brzeziński T., and Wisbauer R., Corings and Comodules, Cambridge University Press, United Kingdom, 2003 | MR | Zbl
[16] Lam T. Y., Graduated Texts in Mathematics: Lectures on Modules and Rings, Springer-Verlag, New York, 1994 | MR
[17] Adkins W. A., and Weintraub S. H., Algebra “An Approach via Module Theory”, Springer-Verlag, New York, 1992 | MR | Zbl