Clean coalgebras and clean comodules of finitely generated projective modules
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 251-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring with multiplicative identity and $P$ is a finitely generated projective $R$-module. If $P^{\ast}$ is the set of $R$-module homomorphism from $P$ to $R$, then the tensor product $P^{\ast}\otimes_{R}P$ can be considered as an $R$-coalgebra. Furthermore, $P$ and $P^{\ast}$ is a comodule over coalgebra $P^{\ast}\otimes_{R}P$. Using the Morita context, this paper give sufficient conditions of clean coalgebra $P^{\ast}\otimes_{R}P$ and clean $P^{\ast}\otimes_{R}P$-comodule $P$ and $P^{\ast}$. These sufficient conditions are determined by the conditions of module $P$ and ring $R$.
Keywords: clean coalgebra, clean comodule, finitely generated projective module
Mots-clés : Morita context.
@article{ADM_2021_31_2_a5,
     author = {N. P. Puspita and I. E. Wijayanti and B. Surodjo},
     title = {Clean coalgebras and clean comodules of finitely generated projective modules},
     journal = {Algebra and discrete mathematics},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/}
}
TY  - JOUR
AU  - N. P. Puspita
AU  - I. E. Wijayanti
AU  - B. Surodjo
TI  - Clean coalgebras and clean comodules of finitely generated projective modules
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 251
EP  - 260
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/
LA  - en
ID  - ADM_2021_31_2_a5
ER  - 
%0 Journal Article
%A N. P. Puspita
%A I. E. Wijayanti
%A B. Surodjo
%T Clean coalgebras and clean comodules of finitely generated projective modules
%J Algebra and discrete mathematics
%D 2021
%P 251-260
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/
%G en
%F ADM_2021_31_2_a5
N. P. Puspita; I. E. Wijayanti; B. Surodjo. Clean coalgebras and clean comodules of finitely generated projective modules. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 251-260. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a5/

[1] Nicholson W K., “Lifting Idempotents and Exchange Rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[2] Warfield, Jr., R. B., “Exchange rings and decompositions of modules”, Math. Ann., 199 (1972), 31–36 | DOI | MR | Zbl

[3] Crawley, P., and Jónnson, B., “Refinements for Infinite Direct Decompositions Algebraic System”, Pacific J. Math., 14 (1964), 797–855 | DOI | MR | Zbl

[4] Camillo V P., and Yu H. P., “Exchange Rings, Units and Idempotents”, Comm. Algebra, 22:12 (1994), 4737–4749 | DOI | MR | Zbl

[5] Han, J., and Nicholson W. K., “Extension of Clean Rings”, Comm. Algebra, 29:6 (2001), 2589–2595 | DOI | MR | Zbl

[6] Anderson D. D., and Camillo V. P., “Commutative Rings Whose Element are a sum of a Unit and Idempotent”, Comm. Algebra, 30:7 (2002), 3327–3336 | DOI | MR | Zbl

[7] Tousi, M., and Yassemi, S., “Tensor Product of Clean Rings”, Glasgow Math. J., 47 (2005), 501–503 | DOI | MR | Zbl

[8] McGovern W. Wm., “Characterization of commutative clean rings”, Int. J. Math. Game Theory Algebra, 15:40 (2006), 403–413 | MR | Zbl

[9] Chen, H., and Chen, M., “On Clean Ideals”, IJMMS, 62 (2002), 3949–3956 | MR

[10] Nicholson W. K., and Varadarajan K., “Countable Linear Transformations are Clean”, Proceedings of American Mathematical Socienty, 126 (1998), 61–64 | DOI | MR | Zbl

[11] Scarcoid M. O., “Perturbation the Linear Transformation By Idempotent”, Irish Math. Soc. Bull., 39 (1997), 10–13 | DOI | MR

[12] Nicholson W. K., Varadarajan K. and Zhou Y., “Clean Endomorphism Rings”, Archiv der Mathematik, 83 (2004), 340–343 | DOI | MR | Zbl

[13] Camillo V. P., Khurana, D., Lam T. Y., Nicholson W. K. and Zhou Y., “Continous Modules are Clean”, J. Algebra, 304 (2006), 94–111 | DOI | MR | Zbl

[14] Camillo V. P., Khurana, D., Lam T. Y., Nicholson W. K. and Zhou Y., “A Short Proof that Continous Modules are Clean”, Proceedings of the Sixth China-Japan-Korea International Conference on Ring Theory, Contemporary Ring Theory 2011, 2012, 165–169 | MR | Zbl

[15] Brzeziński T., and Wisbauer R., Corings and Comodules, Cambridge University Press, United Kingdom, 2003 | MR | Zbl

[16] Lam T. Y., Graduated Texts in Mathematics: Lectures on Modules and Rings, Springer-Verlag, New York, 1994 | MR

[17] Adkins W. A., and Weintraub S. H., Algebra “An Approach via Module Theory”, Springer-Verlag, New York, 1992 | MR | Zbl