Some properties of various graphs associated with finite groups
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 195-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it is shown that the simple group $L_2(7)$ can be characterized through the tree-number of its power graph. Moreover, the classification of groups with power-free decomposition is presented. Finally, we obtain an explicit formula concerning the tree-number of commuting graphs associated with the Suzuki simple groups.
Keywords: power graph, commuting graph, tree-number
Mots-clés : simple group.
@article{ADM_2021_31_2_a1,
     author = {X. Y. Chen and A. R. Moghaddamfar and M. Zohourattar},
     title = {Some properties of various graphs associated with finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {195--211},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a1/}
}
TY  - JOUR
AU  - X. Y. Chen
AU  - A. R. Moghaddamfar
AU  - M. Zohourattar
TI  - Some properties of various graphs associated with finite groups
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 195
EP  - 211
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a1/
LA  - en
ID  - ADM_2021_31_2_a1
ER  - 
%0 Journal Article
%A X. Y. Chen
%A A. R. Moghaddamfar
%A M. Zohourattar
%T Some properties of various graphs associated with finite groups
%J Algebra and discrete mathematics
%D 2021
%P 195-211
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a1/
%G en
%F ADM_2021_31_2_a1
X. Y. Chen; A. R. Moghaddamfar; M. Zohourattar. Some properties of various graphs associated with finite groups. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 195-211. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a1/

[1] J. H. Abawajy, A. V. Kelarev and M. Chowdhury, “Power graphs: a survey”, Electron. J. Graph Theory Appl. (EJGTA), 1:2 (2013), 125–147 | DOI | MR | Zbl

[2] N. Akbari and A. R. Ashrafi, “Note on the power graph of finite simple groups”, Quasigroups Related Systems, 23:2 (2015), 165–173 | MR | Zbl

[3] A. Ballester-Bolinches, J. Cossey and R. Esteban-Romero, “A characterization via graphs of the soluble groups in which permutability is transitive”, Algebra Discrete Math., 8:4 (2009), 10–17 | MR

[4] S. Bera, “On the intersection power graph of a finite group”, Electron. J. Graph Theory Appl. (EJGTA), 6:1 (2018), 178–189 | DOI | MR | Zbl

[5] S. Bera and A. K. Bhuniya, “On enhanced power graphs of finite groups”, J. Algebra Appl., 17:8 (2018), 1850146, 8 pp. | DOI | MR | Zbl

[6] A. K. Bhuniya and S. Bera, “Normal subgroup based power graphs of a finite group”, Comm. Algebra, 45:8 (2017), 3251–3259 | DOI | MR | Zbl

[7] A. K. Bhuniya and S. Bera, “On some characterizations of strong power graphs of finite groups”, Spec. Matrices, 4 (2016), 121–129 | MR | Zbl

[8] N. Biggs, Algebraic Graph Theory, Cambridge University Press, London, 1974 | MR | Zbl

[9] A. Brandstädt, “Partitions of graphs into one or two independent sets and cliques”, Discrete Math., 152:1–3 (1996), 47–54 | DOI | MR | Zbl

[10] J. R. Britnell and N. Gill, “Perfect commuting graphs”, J. Group Theory, 20:1 (2017), 71–102 | DOI | MR | Zbl

[11] D. Bubboloni, M. A. Iranmanesh, S. M. Shaker, “Quotient graphs for power graphs”, Rend. Semin. Mat. Univ. Padova, 138 (2017), 61–89 | DOI | MR | Zbl

[12] P. J. Cameron, “The power graph of a finite group. II”, J. Group Theory, 13:6 (2010), 779–783 | DOI | MR | Zbl

[13] P. J. Cameron, “H. Guerra and S. Jurina, The power graph of a torsion-free group”, J. Algebraic Combin., 49:1 (2019), 83–98 | DOI | MR | Zbl

[14] I. Chakrabarty, S. Ghosh and M. K. Sen, “Undirected power graphs of semigroups”, Semigroup Forum, 78 (2009), 410–426 | DOI | MR | Zbl

[15] S. Chattopadhyay and P. Panigrahi, “Some structural properties of power graphs and $k$-power graphs of finite semigroups”, J. Discrete Math. Sci. Cryptogr., 20:5 (2017), 1101–1119 | DOI | MR | Zbl

[16] S. Chattopadhyay and P. Panigrahi, “Some relations between power graphs and Cayley graphs”, J. Egyptian Math. Soc., 23:3 (2015), 457–462 | DOI | MR | Zbl

[17] S. Chattopadhyay and P. Panigrahi, “Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups”, Algebra Discrete Math., 18:1 (2014), 42–49 | MR | Zbl

[18] S. Chattopadhyay, P. Panigrahi and F. Atik, “Spectral radius of power graphs on certain finite groups”, Indag. Math. (N.S.), 29:2 (2018), 730–737 | DOI | MR | Zbl

[19] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[20] B. Curtin, G. R. Pourgholi and H. Yousefi-Azari, “On the punctured power graph of a finite group”, Australas. J. Combin., 62 (2015), 1–7 | MR | Zbl

[21] A. K. Das and D. Nongsiang, “On the genus of the commuting graphs of finite nonabelian groups”, Int. Electron. J. Algebra, 19 (2016), 91–109 | DOI | MR | Zbl

[22] A. Doostabadi and M. Farrokhi D. G., “Embeddings of (proper) power graphs of finite groups”, Algebra Discrete Math., 24:2 (2017), 221–234 | MR | Zbl

[23] A. Doostabadi, M. Farrokhi, D. Ghouchan, “On the connectivity of proper power graphs of finite groups”, Comm. Algebra, 43:10 (2015), 4305–4319 | DOI | MR | Zbl

[24] S. Földes and P. L. Hammer, “Split graphs”, Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ. Baton Rouge, La., 1977), 311–315 | MR | Zbl

[25] A. Hamzeh, “Signless and normalized Laplacian spectrums of the power graph and its supergraphs of certain finite groups”, J. Indones. Math. Soc., 24:1 (2018), 61–69 | DOI | MR | Zbl

[26] A. Hamzeh and A. R. Ashrafi, “The order supergraph of the power graph of a finite group”, Turkish J. Math., 42:4 (2018), 1978–1989 | DOI | MR | Zbl

[27] A. Hamzeh and A. R. Ashrafi, “Spectrum and L-spectrum of the power graph and its main supergraph for certain finite groups”, Filomat, 31:16 (2017), 5323–5334 | DOI | MR | Zbl

[28] A. Hamzeh and A. R. Ashrafi, “Automorphism groups of supergraphs of the power graph of a finite group”, European J. Combin., 60 (2017), 82–88 | DOI | MR | Zbl

[29] B. Huppert and N. Blackbrun, Finite Groups, v. II, Springer-Verlag, Berlin, 1982 | MR

[30] B. Huppert and N. Blackbrun, Finite Groups, v. III, Springer-Verlag, Berlin, 1982 | MR

[31] S. H. Jafari, “Some results in a new power graphs in finite groups”, Util. Math., 103 (2017), 181–187 | MR | Zbl

[32] S. H. Jafari, “Some properties of power graphs in finite group”, Asian-Eur. J. Math., 9:4 (2016), 1650079, 6 pp. | DOI | MR | Zbl

[33] S. Kirkland, A. R. Moghaddamfar, S. Navid Salehy, S. Nima Salehy and M. Zohourattar, “The complexity of power graphs associated with finite groups”, Contributions to Discrete Mathematics, 13:2 (2018), 124–136 | MR | Zbl

[34] A. V. Kelarev, Graph Algebras and Automata, Marcel Dekker, New York, 2003 | MR | Zbl

[35] A. V. Kelarev, Ring Constructions and Applications, World Scientific, River Edge, NJ, 2002 | MR | Zbl

[36] A. V. Kelarev and S. J. Quinn, “A combinatorial property and power graphs of groups”, The Vienna Conference, Contrib. General Algebra, 12, 2000, 229–235 | MR | Zbl

[37] A. V. Kelarev and S. J. Quinn, “Directed graphs and combinatorial properties of semigroups”, J. Algebra, 251 (2002), 16–26 | DOI | MR | Zbl

[38] A. V. Kelarev and S. J. Quinn, “A combinatorial property and power graphs of semigroups”, Comment. Math. Univ. Carolinae, 45 (2004), 1–7 | MR | Zbl

[39] A. V. Kelarev, S. J. Quinn and R. Smolikova, “Power graphs and semigroups of matrices”, Bull. Austral. Math. Soc., 63 (2001), 341–344 | DOI | MR | Zbl

[40] A. Kelarev, J. Ryan, J. Yearwood, “Cayley graphs as classifiers for data mining: The influence of asymmetries”, Discrete Mathematics, 309 (2009), 5360–5369 | DOI | MR | Zbl

[41] X. Ma and M. Feng, “On the chromatic number of the power graph of a finite group”, Indag. Math. (N.S.), 26:4 (2015), 626–633 | DOI | MR | Zbl

[42] X. Ma, M. Feng and K. Wang, “The rainbow connection number of the power graph of a finite group”, Graphs Combin., 32:4 (2016), 1495–1504 | DOI | MR | Zbl

[43] X. Ma, R. Fu and X. Lu, “On the independence number of the power graph of a finite group”, Indag. Math. (N.S.), 29:2 (2018), 794–806 | DOI | MR | Zbl

[44] X. Ma, R. Fu, X. Lu, M. Guoand, Z. Zhao, “Perfect codes in power graphs of finite groups”, Open Math., 15 (2017), 1440–1449 | DOI | MR

[45] A. Mahmoudifar and A. R. Moghaddamfar, “Commuting graphs of groups and related numerical parameters”, Comm. Algebra, 45:7 (2017), 3159–3165 | DOI | MR | Zbl

[46] S. K. Maity, “Bipartite and planar power graphs of finite groups”, Southeast Asian Bull. Math., 39:4 (2015), 539–543 | MR | Zbl

[47] Z. Mehranian, A. Gholami and A. R. Ashrafi, “The spectra of power graphs of certain finite groups”, Linear Multilinear Algebra, 65:5 (2017), 1003–1010 | DOI | MR | Zbl

[48] Z. Mehranian, A. Gholami and A. R. Ashrafi, “A note on the power graph of a finite group”, Int. J. Group Theory, 5:1 (2016), 1–10 | MR | Zbl

[49] R. Merris, “Laplacian graph eigenvectors”, Linear Algebra Appl., 278 (1998), 221–236 | DOI | MR | Zbl

[50] A. R. Moghaddamfar, S. Rahbariyan, S. Navid Salehy and S. Nima Salehy, “The number of spanning trees of power graphs associated with specific groups and some applications”, Ars Combinatoria, 113 (2017), 269–296 | MR

[51] A. R. Moghaddamfar, S. Rahbariyan, and W. J. Shi, “Certain properties of the power graph associated with a finite group”, J. Algebra Appl., 13:7 (2014), 1450040, 18 pp. | DOI | MR | Zbl

[52] R. P. Panda and K. V. Krishna, “On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups”, Comm. Algebra, 46:7 (2018), 3182–3197 | DOI | MR | Zbl

[53] R. P. Panda and K. V. Krishna, “On connectedness of power graphs of finite groups”, J. Algebra Appl., 17:10 (2018), 1850184, 20 pp. | DOI | MR | Zbl

[54] K. Pourghobadi and S. H. Jafari, “The diameter of power graphs of symmetric groups”, J. Algebra Appl., 17:12 (2018), 1850234, 11 pp. | DOI | MR | Zbl

[55] G. R. Pourgholi, H. Yousefi-Azari and A. R. Ashrafi, “The undirected power graph of a finite group”, Bull. Malays. Math. Sci. Soc., 38:4 (2015), 1517–1525 | DOI | MR | Zbl

[56] I. V. Protasov and K. D. Protasova, “Automorphisms of kaleidoscopical graphs”, Algebra Discrete Math., 6:2 (2007), 125–129 | MR

[57] H. Sachs, “On the number of spanning trees”, Proceedings of the Fifth British Combinatorial Conference, Congressus Numerantium, No. XV (Univ. Aberdeen, Aberdeen, 1975), Utilitas Math., Winnipeg, Man., 1976, 529–535 | MR

[58] M. Shaker and M. A. Iranmanesh, “On groups with specified quotient power graphs”, Int. J. Group Theory, 5:3 (2016), 49–60 | MR | Zbl

[59] Y. Shitov, “Coloring the power graph of a semigroup”, Graphs Combin., 33:2 (2017), 485–487 | DOI | MR | Zbl

[60] A. J. Slupik and V. I. Sushchansky, “Minimal generating sets and Cayley graphs of Sylow $p$-subgroups of finite symmetric groups”, Algebra Discrete Math., 8:4 (2009), 167–184 | MR

[61] M. Suzuki, “A new type of simple groups of finite order”, Proc. Nat. Acad. Sci. U.S.A., 46 (1960), 868–870 | DOI | MR | Zbl

[62] M. Suzuki, “On a class of doubly transitive groups”, Ann. of Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[63] T. Tamizh Chelvam and M. Sattanathan, “Power graph of finite abelian groups”, Algebra Discrete Math., 16:1 (2013), 33–41 | MR | Zbl

[64] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. Elektron. Mat. Izv., 6 (2009), 1–12 | MR | Zbl