Groups containing locally maximal product-free sets of size~$4$
Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 167-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

Every locally maximal product-free set $S$ in a finite group $G$ satisfies $G=S\cup SS \cup S^{-1}S \cup SS^{-1}\cup \sqrt{S}$, where $SS=\{xy\mid x,y\in S\}$, $S^{-1}S=\{x^{-1}y\mid x,y\in S\}$, $SS^{-1}=\{xy^{-1}\mid x,y\in S\}$ and $\sqrt{S}=\{x\in G\mid x^2\in S\}$. To better understand locally maximal product-free sets, Bertram asked whether every locally maximal product-free set $S$ in a finite abelian group satisfy $|\sqrt{S}|\leq 2|S|$. This question was recently answered in the negation by the current author. Here, we improve some results on the structures and sizes of finite groups in terms of their locally maximal product-free sets. A consequence of our results is the classification of abelian groups that contain locally maximal product-free sets of size $4$, continuing the work of Street, Whitehead, Giudici and Hart on the classification of groups containing locally maximal product-free sets of small sizes. We also obtain partial results on arbitrary groups containing locally maximal product-free sets of size $4$, and conclude with a conjecture on the size $4$ problem as well as an open problem on the general case.
Keywords: product-free sets, locally maximal, groups.
Mots-clés : maximal
@article{ADM_2021_31_2_a0,
     author = {C. S. Anabanti},
     title = {Groups containing locally maximal product-free sets of size~$4$},
     journal = {Algebra and discrete mathematics},
     pages = {167--194},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a0/}
}
TY  - JOUR
AU  - C. S. Anabanti
TI  - Groups containing locally maximal product-free sets of size~$4$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 167
EP  - 194
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a0/
LA  - en
ID  - ADM_2021_31_2_a0
ER  - 
%0 Journal Article
%A C. S. Anabanti
%T Groups containing locally maximal product-free sets of size~$4$
%J Algebra and discrete mathematics
%D 2021
%P 167-194
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a0/
%G en
%F ADM_2021_31_2_a0
C. S. Anabanti. Groups containing locally maximal product-free sets of size~$4$. Algebra and discrete mathematics, Tome 31 (2021) no. 2, pp. 167-194. http://geodesic.mathdoc.fr/item/ADM_2021_31_2_a0/

[1] C. S. Anabanti, “On filled soluble groups”, Communications in Algebra, 46:11 (2018), 4914–4917 | DOI | MR | Zbl

[2] C. S. Anabanti, “On the three questions of Bertram on locally maximal sum-free sets”, Quaestiones Mathematicae, 44:3 (2021), 301–305 | DOI | MR | Zbl

[3] C. S. Anabanti, “Three questions of Bertram on locally maximal sum-free sets”, Applicable Algebra in Engineering, Communication and Computing, 30:2 (2019), 127–134 | DOI | MR | Zbl

[4] C. S. Anabanti, G. Erskine and S. B. Hart, “Groups whose locally maximal product-free sets are complete”, The Australasian Journal of Combinatorics, 71:3 (2018), 544–563 | MR | Zbl

[5] C. S. Anabanti and S. B. Hart, “Groups containing small locally maximal product-free sets”, International Journal of Combinatorics, 2016 (2016), 8939182, 5 pp. | DOI | MR | Zbl

[6] C. S. Anabanti and S. B. Hart, “On a conjecture of Street and Whitehead on locally maximal product-free sets”, The Australasian Journal of Combinatorics, 63:3 (2015), 385–398 | MR | Zbl

[7] E. A. Bertram, “Some applications of Graph Theory to Finite Groups”, Discrete Mathematics, 44 (1983), 31–43 | DOI | MR | Zbl

[8] The GAP Group, GAP — Groups, Algorithms, and Programming, Version 4.8.6, 2016 http://www.gap-system.org

[9] M. Giudici and S. Hart, “Small maximal sum-free sets”, The Electronic Journal of Combinatorics, 16 (2009), 17 pp. | DOI | MR | Zbl

[10] K. S. Kedlaya, “Product-free subsets of groups”, American Mathematical Monthly, 105 (1998), 900–906 | DOI | MR | Zbl

[11] A. P. Street and E. G. Whitehead Jr., “Group Ramsey Theory”, Journal of Combinatorial Theory Series A, 17 (1974), 219–226 | DOI | MR | Zbl

[12] A. P. Street and E. G. Whitehead, Jr., “Sum-free sets, difference sets and cyclotomy”, Comb. Math., Lecture Notes in Math., 403, Springer-Verlag, 1974, 109–124 | DOI | MR