On extension of classical Baer results to Poisson algebras
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 84-108
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove that if $P$ is a Poisson algebra and the $n$th hypercenter (center) of $P$ has a finite codimension, then $P$ includes a finite-dimensional ideal $K$ such that $P/K$ is nilpotent (abelian). As a corollary, we show that if the $n$th hypercenter of a Poisson algebra $P$ (over some specific field) has a finite codimension and $P$ does not contain zero divisors, then $P$ is an abelian algebra.
Keywords:
Lie algebra, ideal, center, hypercenter, zero divisor, finite dimension, nilpotency.
Mots-clés : Poisson algebra, subalgebra
Mots-clés : Poisson algebra, subalgebra
@article{ADM_2021_31_1_a5,
author = {L. A. Kurdachenko and A. A. Pypka and I. Ya. Subbotin},
title = {On extension of classical {Baer} results to {Poisson} algebras},
journal = {Algebra and discrete mathematics},
pages = {84--108},
publisher = {mathdoc},
volume = {31},
number = {1},
year = {2021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/}
}
TY - JOUR AU - L. A. Kurdachenko AU - A. A. Pypka AU - I. Ya. Subbotin TI - On extension of classical Baer results to Poisson algebras JO - Algebra and discrete mathematics PY - 2021 SP - 84 EP - 108 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/ LA - en ID - ADM_2021_31_1_a5 ER -
L. A. Kurdachenko; A. A. Pypka; I. Ya. Subbotin. On extension of classical Baer results to Poisson algebras. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 84-108. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/