On extension of classical Baer results to Poisson algebras
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 84-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that if $P$ is a Poisson algebra and the $n$th hypercenter (center) of $P$ has a finite codimension, then $P$ includes a finite-dimensional ideal $K$ such that $P/K$ is nilpotent (abelian). As a corollary, we show that if the $n$th hypercenter of a Poisson algebra $P$ (over some specific field) has a finite codimension and $P$ does not contain zero divisors, then $P$ is an abelian algebra.
Keywords: Lie algebra, ideal, center, hypercenter, zero divisor, finite dimension, nilpotency.
Mots-clés : Poisson algebra, subalgebra
@article{ADM_2021_31_1_a5,
     author = {L. A. Kurdachenko and A. A. Pypka and I. Ya. Subbotin},
     title = {On extension of classical {Baer} results to {Poisson} algebras},
     journal = {Algebra and discrete mathematics},
     pages = {84--108},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - A. A. Pypka
AU  - I. Ya. Subbotin
TI  - On extension of classical Baer results to Poisson algebras
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 84
EP  - 108
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/
LA  - en
ID  - ADM_2021_31_1_a5
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A A. A. Pypka
%A I. Ya. Subbotin
%T On extension of classical Baer results to Poisson algebras
%J Algebra and discrete mathematics
%D 2021
%P 84-108
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/
%G en
%F ADM_2021_31_1_a5
L. A. Kurdachenko; A. A. Pypka; I. Ya. Subbotin. On extension of classical Baer results to Poisson algebras. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 84-108. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a5/