On invariants of polynomial functions, II
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 71-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a finite partially ordered set. In our previous paper, we defined the sectional geometric genus $g_{i}(P)$ of $P$ and studied $g_{i}(P)$. In this paper, by using this sectional geometric genus of $P$, we will give a criterion about the case in which $P$ has no order.
Keywords: partially ordered set, polynomial function, sectional geometric genus.
Mots-clés : order polynomial
@article{ADM_2021_31_1_a4,
     author = {Y. Fukuma},
     title = {On invariants of polynomial functions, {II}},
     journal = {Algebra and discrete mathematics},
     pages = {71--83},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a4/}
}
TY  - JOUR
AU  - Y. Fukuma
TI  - On invariants of polynomial functions, II
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 71
EP  - 83
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a4/
LA  - en
ID  - ADM_2021_31_1_a4
ER  - 
%0 Journal Article
%A Y. Fukuma
%T On invariants of polynomial functions, II
%J Algebra and discrete mathematics
%D 2021
%P 71-83
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a4/
%G en
%F ADM_2021_31_1_a4
Y. Fukuma. On invariants of polynomial functions, II. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 71-83. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a4/

[1] Y. Fukuma, “On invariants of polynomial functions”, Japan. J. Math., 31 (2005), 345–378 | DOI | MR

[2] Y. Fukuma, “Topics on invariants of polarized varieties”, Sugaku Expositions, 25 (2012), 19–45 | MR

[3] Y. Kaki, Master's thesis, Kochi University, 2007 (in Japanese)

[4] A. Ooishi, “Genera and arithmetic genera of commutative rings”, Hiroshima Math. J., 17 (1987), 47–66 | MR | Zbl

[5] A. Ooishi, “$\Delta$-genera and sectional genera of commutative rings”, Hiroshima Math. J., 17 (1987), 361–372 | MR | Zbl

[6] R. P. Stanley, Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, 2nd. edition, Cambridge University Press, Cambridge, 2012 | MR | Zbl