Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_31_1_a2, author = {M. Das and S. Gupta and S. K. Sardar}, title = {Morita equivalence of semirings with local units}, journal = {Algebra and discrete mathematics}, pages = {37--60}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a2/} }
M. Das; S. Gupta; S. K. Sardar. Morita equivalence of semirings with local units. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a2/
[1] G. D. Abrams, “Morita equivalence for rings with local units”, Communications in Algebra, 11:8 (1983), 801–837 | DOI | MR | Zbl
[2] J. Adamek, H. Herlich and G. Strecker, Abstract and concrete categories, John Wiley Sons, New York, 1990 | MR | Zbl
[3] F. W. Anderson and K. R. Fuller, Rings and categories of modules, 2nd ed., Springer, New York, 1992 | MR | Zbl
[4] P. N. Ánh and L. Márki, “Morita equivalence for rings without identity”, Tsukuba J. Math., 11:1 (1987), 1–16 | MR | Zbl
[5] S. Ghosh, “A characterization of ring congruences on semirings”, Soochow J. Math., 19:3 (1993), 305–312 | MR | Zbl
[6] J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl
[7] U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, World Scientific Publishing, Singapore, 1998 | MR | Zbl
[8] U. Hebisch and H. J. Weinert, “Semirings and semifields”, Handbook of Algebra, v. 1, 1996, 425–462 | DOI | MR | Zbl
[9] M. Kilp, U. Knauer and A. V. Mikhalev, Monoids, acts and categories, Walter de Gruyter, Berlin–New York, 2000 | MR | Zbl
[10] Y. Katsov and T. G. Nam, “Morita equivalence and homological characterization of semirings”, Journal of Algebra and Its Applications, 10:3 (2011), 445–473 | DOI | MR | Zbl
[11] Y. Katsov, T. G. Nam and J. Zumbragel, “On simpleness of semirings and complete semirings”, J. Algebra Appl., 13:6 (2014), 1450015, 29 pp. | DOI | MR | Zbl
[12] S. Mac Lane, Categories for the Working Mathematician, Springer, New York, 1971 | MR | Zbl
[13] K. Morita, “Duality of modules and its applications to the theory of rings with minimum condition”, Science Rep. Tokyo Kyoiku Daigaku Sect. A6, 1958, 85–142 | MR
[14] T. K. Mukherjee, M. K. Sen and S. Ghosh, “Chain conditions on semirings”, International Journal of Mathematics and Mathematical Sciences, 19:2 (1996), 321–326 | DOI | MR | Zbl
[15] S. K. Sardar, S. Gupta and B. C. Saha, “Morita equivalence of semirings and its connection with Nobusawa $\Gamma$-semirings with unities”, Algebra Colloquium, 22, Spec 1 (2015), 985–1000 | DOI | MR | Zbl
[16] S. K. Sardar and S. Gupta, “Morita invariants of semirings”, J. Agebra Appl., 15:2 (2016), 1650023, 14 pp. | DOI | MR | Zbl
[17] S. K. Sardar and S. Gupta, “Morita invariants of semirings-II”, Asian-European Journal of Mathematics, 11:1 (2018), 1850014 | DOI | MR | Zbl