Morita equivalence of semirings with local units
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 37-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study some necessary and sufficient conditions for two semirings with local units to be Morita equivalent. Then we obtain some properties which remain invariant under Morita equivalence.
Keywords: semiring, semimodule.
Mots-clés : Morita equivalence, Morita context, Morita invariant
@article{ADM_2021_31_1_a2,
     author = {M. Das and S. Gupta and S. K. Sardar},
     title = {Morita equivalence of semirings with local units},
     journal = {Algebra and discrete mathematics},
     pages = {37--60},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a2/}
}
TY  - JOUR
AU  - M. Das
AU  - S. Gupta
AU  - S. K. Sardar
TI  - Morita equivalence of semirings with local units
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 37
EP  - 60
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a2/
LA  - en
ID  - ADM_2021_31_1_a2
ER  - 
%0 Journal Article
%A M. Das
%A S. Gupta
%A S. K. Sardar
%T Morita equivalence of semirings with local units
%J Algebra and discrete mathematics
%D 2021
%P 37-60
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a2/
%G en
%F ADM_2021_31_1_a2
M. Das; S. Gupta; S. K. Sardar. Morita equivalence of semirings with local units. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 37-60. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a2/