Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2021_31_1_a0, author = {V. Bavula and T. Lu}, title = {The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$}, journal = {Algebra and discrete mathematics}, pages = {1--16}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/} }
TY - JOUR AU - V. Bavula AU - T. Lu TI - The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$ JO - Algebra and discrete mathematics PY - 2021 SP - 1 EP - 16 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/ LA - en ID - ADM_2021_31_1_a0 ER -
%0 Journal Article %A V. Bavula %A T. Lu %T The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$ %J Algebra and discrete mathematics %D 2021 %P 1-16 %V 31 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/ %G en %F ADM_2021_31_1_a0
V. Bavula; T. Lu. The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/
[1] V. V. Bavula, “Description of two-sided ideals in a class of noncommutative rings. I”, Ukrainian Math. J., 45:2 (1993), 223–234 | DOI | MR | Zbl
[2] V. V. Bavula, “Description of two-sided ideals in a class of noncommutative rings. II”, Ukrainian Math. J., 45:3 (1993), 329–334 | DOI | MR | Zbl
[3] V. V. Bavula and T. Lu, “The prime spectrum and simple modules over the quantum spatial ageing algebra”, Algebr. Represent. Theory, 19 (2016), 1109–1133 | DOI | MR | Zbl
[4] V. V. Bavula and T. Lu, “Classification of simple weight modules over the Schrödinger algebra”, Canad. Math. Bull., 61:1 (2018), 16–39 | DOI | MR | Zbl
[5] V. V. Bavula and T. Lu, “The universal enveloping algebra $U(\mathfrak{sl}_2 \ltimes V_2)$, its prime spectrum and a classification of its simple weight modules”, J. Lie Theory, 28:2 (2018), 525–560 | MR | Zbl
[6] V. V. Bavula and T. Lu, “The universal enveloping algebra of the Schrödinger algebra and its prime spectrum”, Canad. Math. Bull., 61:4 (2018), 688–703 | DOI | MR | Zbl
[7] V. V. Bavula and T. Lu, “The prime ideals and simple modules of the universal enveloping algebra $U(\mathfrak{b} \ltimes V_2)$”, Glasg. Math. J., 62:S1 (2020), S77–S98 | DOI | MR | Zbl
[8] K. A. Brown, K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Course in Math. CRM Barcelona, 2, Birkhauser, Basel, 2002 | MR
[9] Y. Cai, Y. Cheng and R. Shen, “Quasi-Whittaker modules for the Schrödinger algebra”, Lin. Alg. Appl., 463 (2014), 16–32 | DOI | MR | Zbl
[10] S. Catoiu, “Ideals of the enveloping algebra $U(sl2)$”, J. Algebra, 202 (1998), 142–177 | DOI | MR | Zbl
[11] L. Delvaux, E. Nauwelaerts, A. I. Ooms and P. Wauters, “Primitive localizations of an enveloping algebra”, J. Algebra, 130 (1990), 311–327 | DOI | MR | Zbl
[12] J. Dixmier, Enveloping Algebras, Graduate Studies in Mathematics, 11, 1996 | DOI | MR | Zbl
[13] B. Dubsky, “Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra”, Lin. Alg. Appl., 443 (2014), 204–214 | DOI | MR | Zbl
[14] B. Dubsky, R. Lü, V. Mazorchuk, K. Zhao, “Category $\mathcal{O}$ for the Schrödinger algebra”, Lin. Alg. Appl., 460 (2014), 17–50 | DOI | MR | Zbl
[15] V. Dobrev, H.-D. Doebner, C. Mrugalla, “Lowest weight representations of the Schrödinger algebra and generalized heat/Schrödinger equations”, Rep. Math. Phys., 39 (1997), 201–218 | DOI | MR | Zbl
[16] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, 2001 | DOI | MR | Zbl
[17] A. I. Ooms and M. Van den Bergh, “A degree inequality for Lie algebras with a regular Poisson semi-center”, J. Algebra, 323 (2010), 305–322 | DOI | MR | Zbl
[18] M. Perroud, “Projective representations of the Schrödinger group”, Helv. Phys. Acta, 50:2 (1977), 233–252 | MR
[19] L. H. Rowen, Ring Theory, v. II, Academic Press, 1988 | MR
[20] Y. Wu, L. Zhu, “Simple weight modules for Schrödinger algebra”, Lin. Alg. Appl., 438 (2013), 559–563 | DOI | MR | Zbl
[21] Y. Wu, “Finite dimensional indecomposable modules for Schrödinger algebra”, J. Math. Phys., 54 (2013), 073503 | DOI | MR | Zbl
[22] X. Zhang and Y. Cheng, “Simple Schrödinger modules which are locally finite over the positive part”, J. Pure Appl. Algebra, 219 (2015), 2799–2815 | DOI | MR | Zbl