The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 1-16

Voir la notice de l'article provenant de la source Math-Net.Ru

For the algebras in the title, their prime, primitive and maximal spectra are explicitly described. For each prime ideal an explicit set of generators is given. An explicit description of all the containments between primes is obtained.
Keywords: prime ideal, maximal ideal, universal enveloping algebra, prime spectrum.
@article{ADM_2021_31_1_a0,
     author = {V. Bavula and T. Lu},
     title = {The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$},
     journal = {Algebra and discrete mathematics},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/}
}
TY  - JOUR
AU  - V. Bavula
AU  - T. Lu
TI  - The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 1
EP  - 16
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/
LA  - en
ID  - ADM_2021_31_1_a0
ER  - 
%0 Journal Article
%A V. Bavula
%A T. Lu
%T The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$
%J Algebra and discrete mathematics
%D 2021
%P 1-16
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/
%G en
%F ADM_2021_31_1_a0
V. Bavula; T. Lu. The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/