The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$
Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 1-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the algebras in the title, their prime, primitive and maximal spectra are explicitly described. For each prime ideal an explicit set of generators is given. An explicit description of all the containments between primes is obtained.
Keywords: prime ideal, maximal ideal, universal enveloping algebra, prime spectrum.
@article{ADM_2021_31_1_a0,
     author = {V. Bavula and T. Lu},
     title = {The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$},
     journal = {Algebra and discrete mathematics},
     pages = {1--16},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/}
}
TY  - JOUR
AU  - V. Bavula
AU  - T. Lu
TI  - The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$
JO  - Algebra and discrete mathematics
PY  - 2021
SP  - 1
EP  - 16
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/
LA  - en
ID  - ADM_2021_31_1_a0
ER  - 
%0 Journal Article
%A V. Bavula
%A T. Lu
%T The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$
%J Algebra and discrete mathematics
%D 2021
%P 1-16
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/
%G en
%F ADM_2021_31_1_a0
V. Bavula; T. Lu. The prime spectrum of the universal enveloping algebra of the $1$-spatial ageing algebra and of~$U(\mathfrak{gl}_2)$. Algebra and discrete mathematics, Tome 31 (2021) no. 1, pp. 1-16. http://geodesic.mathdoc.fr/item/ADM_2021_31_1_a0/

[1] V. V. Bavula, “Description of two-sided ideals in a class of noncommutative rings. I”, Ukrainian Math. J., 45:2 (1993), 223–234 | DOI | MR | Zbl

[2] V. V. Bavula, “Description of two-sided ideals in a class of noncommutative rings. II”, Ukrainian Math. J., 45:3 (1993), 329–334 | DOI | MR | Zbl

[3] V. V. Bavula and T. Lu, “The prime spectrum and simple modules over the quantum spatial ageing algebra”, Algebr. Represent. Theory, 19 (2016), 1109–1133 | DOI | MR | Zbl

[4] V. V. Bavula and T. Lu, “Classification of simple weight modules over the Schrödinger algebra”, Canad. Math. Bull., 61:1 (2018), 16–39 | DOI | MR | Zbl

[5] V. V. Bavula and T. Lu, “The universal enveloping algebra $U(\mathfrak{sl}_2 \ltimes V_2)$, its prime spectrum and a classification of its simple weight modules”, J. Lie Theory, 28:2 (2018), 525–560 | MR | Zbl

[6] V. V. Bavula and T. Lu, “The universal enveloping algebra of the Schrödinger algebra and its prime spectrum”, Canad. Math. Bull., 61:4 (2018), 688–703 | DOI | MR | Zbl

[7] V. V. Bavula and T. Lu, “The prime ideals and simple modules of the universal enveloping algebra $U(\mathfrak{b} \ltimes V_2)$”, Glasg. Math. J., 62:S1 (2020), S77–S98 | DOI | MR | Zbl

[8] K. A. Brown, K. R. Goodearl, Lectures on Algebraic Quantum Groups, Advanced Course in Math. CRM Barcelona, 2, Birkhauser, Basel, 2002 | MR

[9] Y. Cai, Y. Cheng and R. Shen, “Quasi-Whittaker modules for the Schrödinger algebra”, Lin. Alg. Appl., 463 (2014), 16–32 | DOI | MR | Zbl

[10] S. Catoiu, “Ideals of the enveloping algebra $U(sl2)$”, J. Algebra, 202 (1998), 142–177 | DOI | MR | Zbl

[11] L. Delvaux, E. Nauwelaerts, A. I. Ooms and P. Wauters, “Primitive localizations of an enveloping algebra”, J. Algebra, 130 (1990), 311–327 | DOI | MR | Zbl

[12] J. Dixmier, Enveloping Algebras, Graduate Studies in Mathematics, 11, 1996 | DOI | MR | Zbl

[13] B. Dubsky, “Classification of simple weight modules with finite-dimensional weight spaces over the Schrödinger algebra”, Lin. Alg. Appl., 443 (2014), 204–214 | DOI | MR | Zbl

[14] B. Dubsky, R. Lü, V. Mazorchuk, K. Zhao, “Category $\mathcal{O}$ for the Schrödinger algebra”, Lin. Alg. Appl., 460 (2014), 17–50 | DOI | MR | Zbl

[15] V. Dobrev, H.-D. Doebner, C. Mrugalla, “Lowest weight representations of the Schrödinger algebra and generalized heat/Schrödinger equations”, Rep. Math. Phys., 39 (1997), 201–218 | DOI | MR | Zbl

[16] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, 30, 2001 | DOI | MR | Zbl

[17] A. I. Ooms and M. Van den Bergh, “A degree inequality for Lie algebras with a regular Poisson semi-center”, J. Algebra, 323 (2010), 305–322 | DOI | MR | Zbl

[18] M. Perroud, “Projective representations of the Schrödinger group”, Helv. Phys. Acta, 50:2 (1977), 233–252 | MR

[19] L. H. Rowen, Ring Theory, v. II, Academic Press, 1988 | MR

[20] Y. Wu, L. Zhu, “Simple weight modules for Schrödinger algebra”, Lin. Alg. Appl., 438 (2013), 559–563 | DOI | MR | Zbl

[21] Y. Wu, “Finite dimensional indecomposable modules for Schrödinger algebra”, J. Math. Phys., 54 (2013), 073503 | DOI | MR | Zbl

[22] X. Zhang and Y. Cheng, “Simple Schrödinger modules which are locally finite over the positive part”, J. Pure Appl. Algebra, 219 (2015), 2799–2815 | DOI | MR | Zbl