General formal local cohomology modules
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 254-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(R,\mathfrak{m})$ be a local ring, $\Phi$ a system of ideals of $R$ and $M$ a finitely generated $R$-module. In this paper, we define and study general formal local cohomology modules. We denote the $i$-th general formal local cohomology module $M$ with respect to $\Phi$ by $\mathfrak{F}_{\Phi}^{i}(M)$ and we investigate some finiteness and Artinianness properties of general formal local cohomology modules.
Keywords: formal local cohomology, local cohomology, system of ideals.
@article{ADM_2020_30_2_a8,
     author = {Sh. Rezaei},
     title = {General formal local cohomology modules},
     journal = {Algebra and discrete mathematics},
     pages = {254--266},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/}
}
TY  - JOUR
AU  - Sh. Rezaei
TI  - General formal local cohomology modules
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 254
EP  - 266
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/
LA  - en
ID  - ADM_2020_30_2_a8
ER  - 
%0 Journal Article
%A Sh. Rezaei
%T General formal local cohomology modules
%J Algebra and discrete mathematics
%D 2020
%P 254-266
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/
%G en
%F ADM_2020_30_2_a8
Sh. Rezaei. General formal local cohomology modules. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 254-266. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/

[1] M. Asgharzadeh, K. Divaani-Aazar, “Finiteness properties of formal local cohomology modules and Cohen-Macaulayness”, Comm. Algebra, 39 (2011), 1082–1103 | DOI | MR | Zbl

[2] M. H. Bijan-Zadeh, “Torsion theories and local cohomology over commutative noetherian rings”, J. London Math. Soc., 19 (1979), 402–410 | DOI | MR | Zbl

[3] M. H. Bijan-Zadeh, “A common generalization of local cohomology theories”, Glasgow Math. J., 21, 173–181 | DOI | MR | Zbl

[4] M. H. Bijan-Zadeh, Sh. Rezaei, “Artinianness and attached primes of formal local cohomology modules”, Algebra Colloquium, 21:2 (2014), 307–316 | DOI | MR | Zbl

[5] M. Brodmann, R. Y. Sharp, Local cohomology: an algebraic introduction with geometric applications, Cambridge Studies in Advanced Mathematics, 60, Cambridge Univ. Press, 1998 | MR | Zbl

[6] M. Eghbali, “On Artinianness of formal local cohomology, colocalization and coassociated primes”, Math. Scand., 113:1 (2013), 5–19 | DOI | MR | Zbl

[7] T. H. Freitas, V. H. Jorge Pérez, “On formal local cohomology modules with respect to a pair of ideals”, J. Commut. Algebra, 3 (2016), 337–366 | MR | Zbl

[8] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, 1986 | MR | Zbl

[9] Sh. Rezaei, “Minimaxness and finiteness properties of formal local cohomology modules”, Kodai Math. J., 38:2 (2015), 430–436 | DOI | MR | Zbl

[10] Sh. Rezaei, “Some results on top local cohomology and top formal local cohomology modules”, Comm. Algebra, 45:2 (2017), 1935–1940 | DOI | MR | Zbl

[11] Sh. Rezaei, “A Generalization of formal local cohomology modules”, Kyungpook Math. J., 56 (2016), 737–743 | DOI | MR | Zbl

[12] P. Schenzel, “On formal local cohomology and connectedness”, J. Algebra, 315:2 (2007), 894–923 | DOI | MR | Zbl

[13] P. Schenzel, “On the use of local cohomology and geometry”, Progress in Math., 1998, 241–292 | MR | Zbl