General formal local cohomology modules
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 254-266

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(R,\mathfrak{m})$ be a local ring, $\Phi$ a system of ideals of $R$ and $M$ a finitely generated $R$-module. In this paper, we define and study general formal local cohomology modules. We denote the $i$-th general formal local cohomology module $M$ with respect to $\Phi$ by $\mathfrak{F}_{\Phi}^{i}(M)$ and we investigate some finiteness and Artinianness properties of general formal local cohomology modules.
Keywords: formal local cohomology, local cohomology, system of ideals.
@article{ADM_2020_30_2_a8,
     author = {Sh. Rezaei},
     title = {General formal local cohomology modules},
     journal = {Algebra and discrete mathematics},
     pages = {254--266},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/}
}
TY  - JOUR
AU  - Sh. Rezaei
TI  - General formal local cohomology modules
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 254
EP  - 266
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/
LA  - en
ID  - ADM_2020_30_2_a8
ER  - 
%0 Journal Article
%A Sh. Rezaei
%T General formal local cohomology modules
%J Algebra and discrete mathematics
%D 2020
%P 254-266
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/
%G en
%F ADM_2020_30_2_a8
Sh. Rezaei. General formal local cohomology modules. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 254-266. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a8/