Decompositions of set-valued mappings
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 235-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a set, $B_{X}$ denotes the family of all subsets of $X$ and $F\colon X \to B_{X}$ be a set-valued mapping such that $x \in F(x)$, $\sup_{x\in X} |F(x)| \kappa$, $\sup_{x\in X} |F^{-1}(x)| \kappa$ for all $x\in X$ and some infinite cardinal $\kappa$. Then there exists a family $\mathcal{F}$ of bijective selectors of $F$ such that $|\mathcal{F}|\kappa$ and $F(x) = \{ f(x)\colon f\in\mathcal{F}\}$ for each $x\in X$. We apply this result to $G$-space representations of balleans.
Keywords: set-valued mapping, selector, ballean.
@article{ADM_2020_30_2_a6,
     author = {I. Protasov},
     title = {Decompositions of set-valued mappings},
     journal = {Algebra and discrete mathematics},
     pages = {235--238},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a6/}
}
TY  - JOUR
AU  - I. Protasov
TI  - Decompositions of set-valued mappings
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 235
EP  - 238
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a6/
LA  - en
ID  - ADM_2020_30_2_a6
ER  - 
%0 Journal Article
%A I. Protasov
%T Decompositions of set-valued mappings
%J Algebra and discrete mathematics
%D 2020
%P 235-238
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a6/
%G en
%F ADM_2020_30_2_a6
I. Protasov. Decompositions of set-valued mappings. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 235-238. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a6/

[1] Cornulier Y., On the space of ends of infinitely generated groups, arXiv: 1901.11073 | MR

[2] A. Harary, Graph Theory, Addison-Wesley, 1994 | MR

[3] O. V. Petrenko, I. V. Protasov, “Balleans and $G$-spaces”, Ukr. Mat. Zh., 64 (2012), 344–350 | DOI | MR | Zbl

[4] I. V. Protasov, “Balleans of bounded geometry and $G$-space”, Algebra Discrete Math., 2008, no. 2, 101–108 | MR | Zbl

[5] I. Protasov, M. Zarichnyi, General Asymptology, Mat. Stud. Monogr. Ser., 12, VNTL, Lviv, 2007 | MR | Zbl

[6] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., 31, American Mathematical Society, Providence RI, 2003 | DOI | MR | Zbl