Decompositions of set-valued mappings
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 235-238
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X$ be a set, $B_{X}$ denotes the family of all subsets of $X$ and $F\colon X \to B_{X}$ be a set-valued mapping such that $x \in F(x)$, $\sup_{x\in X} |F(x)| \kappa$, $\sup_{x\in X} |F^{-1}(x)| \kappa$ for all $x\in X$ and some infinite cardinal $\kappa$. Then there exists a family $\mathcal{F}$ of bijective selectors of $F$ such that $|\mathcal{F}|\kappa$ and $F(x) = \{ f(x)\colon f\in\mathcal{F}\}$ for each $x\in X$. We apply this result to $G$-space representations of balleans.
Keywords:
set-valued mapping, selector, ballean.
@article{ADM_2020_30_2_a6,
author = {I. Protasov},
title = {Decompositions of set-valued mappings},
journal = {Algebra and discrete mathematics},
pages = {235--238},
year = {2020},
volume = {30},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a6/}
}
I. Protasov. Decompositions of set-valued mappings. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 235-238. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a6/
[1] Cornulier Y., On the space of ends of infinitely generated groups, arXiv: 1901.11073 | MR
[2] A. Harary, Graph Theory, Addison-Wesley, 1994 | MR
[3] O. V. Petrenko, I. V. Protasov, “Balleans and $G$-spaces”, Ukr. Mat. Zh., 64 (2012), 344–350 | DOI | MR | Zbl
[4] I. V. Protasov, “Balleans of bounded geometry and $G$-space”, Algebra Discrete Math., 2008, no. 2, 101–108 | MR | Zbl
[5] I. Protasov, M. Zarichnyi, General Asymptology, Mat. Stud. Monogr. Ser., 12, VNTL, Lviv, 2007 | MR | Zbl
[6] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., 31, American Mathematical Society, Providence RI, 2003 | DOI | MR | Zbl