Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_30_2_a12, author = {S. Worawiset and J. Koppitz}, title = {Endomorphisms of {Clifford} semigroups with injective structure homomorphisms}, journal = {Algebra and discrete mathematics}, pages = {290--304}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a12/} }
TY - JOUR AU - S. Worawiset AU - J. Koppitz TI - Endomorphisms of Clifford semigroups with injective structure homomorphisms JO - Algebra and discrete mathematics PY - 2020 SP - 290 EP - 304 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a12/ LA - en ID - ADM_2020_30_2_a12 ER -
S. Worawiset; J. Koppitz. Endomorphisms of Clifford semigroups with injective structure homomorphisms. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 290-304. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a12/
[1] J. Araújo, J. Konieczny, “The Monoid of Holomorphic Endomorphisms of a Group and its Automorphisms”, Semigroups, Acts and Categories with Applications to Graphs, Estonian Mathematical Society, 2008, 7–13 | MR | Zbl
[2] Arthur H. Clifford, G. B. Preston, The algebraic theory of semigroups, v. I, Mathematical Surveys, 7, American Mathematical Society, Providence, R.I., 1961 | MR
[3] T. Gramushnjak, P. Puusemp, “A characterization of a class of $2-$groups by their endomorphism semigroups”, Generalized Lie Theory in Mathematics, Physics and Beyond, eds. Silvestrov S. et al., Springer-Verlag, Berlin, 2009, 151–159 | DOI | MR | Zbl
[4] John M. Howie, An Introduction to Semigroup Theory, Acad. Press. London, 1976 | MR | Zbl
[5] A. V. Karpenko, V. M. Misyakov, “On regularity of the center of the endomorphism ring of an abelian group”, Journal of Mathematical Sciences, 154 (2008), 304–307 | DOI | MR | Zbl
[6] J. D. P. Meldrum, “Regular semigroups of endomorphisms of groups”, Recent Developments in the Algebraic, Analytical, and Topological Theory of Semigroups, Lecture Notes in Mathematics, 998, Springer, Berlin–Heidelberg, 2006, 374–384 | DOI | MR
[7] Mario Petrich, N. Reilly, Completely Regular Semigroups, J. Wiley, New York, 1999 | MR | Zbl
[8] P. Puusemp, “Idempotents of the endomorphism semigroups of groups”, Acta et Comment. Univ. Tartuensis, 366 (1975), 76–104 (Russian) | MR | Zbl
[9] P. Puusemp, “On endomorphisms of groups of order $32$ with maximal subgroups $C_4\times C_2\times C_2$”, Proceedings of the Estonian Academy of Sciences, 63:2 (2014), 105–120 | DOI | Zbl
[10] M. Samman, J. D. P. Meldrum, “On Endomorphisms of Semilattices of Groups”, Algebra Colloquium, 12:01 (2005), 93–100 | DOI | MR | Zbl
[11] S. Worawiset, “On the endomorphism monoids of Clifford Semigroups”, Asian-European Journal of Mathematics, 11:2 (2018), 1850059, 8 pp. | DOI | MR | Zbl