On a product of two formational $\mathrm{tcc}$-subgroups
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 282-289

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called $\mathrm{tcc}$-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\le A$ and $Y\le T$ there exists an element $u\in \langle X,Y\rangle $ such that $XY^u\leq G$. The notation $H\le G $ means that $H$ is a subgroup of a group $G$. In this paper we consider a group $G=AB$ such that $A$ and $B$ are $\mathrm{tcc}$-subgroups in $G$. We prove that $G$ belongs to $\frak F$, when $A$ and $B$ belong to $\mathfrak F$ and $\mathfrak F$ is a saturated formation of soluble groups such that $\mathfrak U \subseteq \mathfrak F$. Here $\mathfrak U$ is the formation of all supersoluble groups.
Keywords: supersoluble group, totally permutable product, saturated formation, $\mathrm{tcc}$-permutable product, $\mathrm{tcc}$-subgroup.
@article{ADM_2020_30_2_a11,
     author = {A. Trofimuk},
     title = {On a product of two formational $\mathrm{tcc}$-subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {282--289},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a11/}
}
TY  - JOUR
AU  - A. Trofimuk
TI  - On a product of two formational $\mathrm{tcc}$-subgroups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 282
EP  - 289
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a11/
LA  - en
ID  - ADM_2020_30_2_a11
ER  - 
%0 Journal Article
%A A. Trofimuk
%T On a product of two formational $\mathrm{tcc}$-subgroups
%J Algebra and discrete mathematics
%D 2020
%P 282-289
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a11/
%G en
%F ADM_2020_30_2_a11
A. Trofimuk. On a product of two formational $\mathrm{tcc}$-subgroups. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 282-289. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a11/