Some results on the main supergraph of~finite~groups
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 172-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong \mathrm{PSL}(2,p)$ or $\mathrm{PGL}(2,p)$ if and only if $\mathcal{S}(G)\cong \mathcal{S}(\mathrm{PSL}(2,p))$ or $\mathcal{S}(\mathrm{PGL}(2,p))$, respectively. Also, we will show that if $M$ is a sporadic simple group, then $G\cong M$ if only if $\mathcal{S}(G)\cong \mathcal{S}(M)$.
Keywords: graph, main supergraph, finite groups, Thompson's problem.
@article{ADM_2020_30_2_a1,
     author = {A. K. Asboei and S. S. Salehi},
     title = {Some results on the main supergraph of~finite~groups},
     journal = {Algebra and discrete mathematics},
     pages = {172--178},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/}
}
TY  - JOUR
AU  - A. K. Asboei
AU  - S. S. Salehi
TI  - Some results on the main supergraph of~finite~groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 172
EP  - 178
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/
LA  - en
ID  - ADM_2020_30_2_a1
ER  - 
%0 Journal Article
%A A. K. Asboei
%A S. S. Salehi
%T Some results on the main supergraph of~finite~groups
%J Algebra and discrete mathematics
%D 2020
%P 172-178
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/
%G en
%F ADM_2020_30_2_a1
A. K. Asboei; S. S. Salehi. Some results on the main supergraph of~finite~groups. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 172-178. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/

[1] A. K. Asboei and A. Iranmanesh, “A characterization of the linear groups $\mathrm{PSL}(2,p)$”, Czechoslovak Math. J., 64:2 (2014), 459–464 | DOI | MR | Zbl

[2] A. K. Asboei, “Characterizing $\mathrm{PSL}(2,r)$ by its order and the number of its Sylow $r$-subgroups”, J. Algebra Appl., 13:1 (2014), 1350065 | DOI | MR | Zbl

[3] A. K. Asboei, “Characterization of projective linear groups by the order of the normalizer of a Sylow subgroup”, Monatsh Math., 173 (2014), 309–314 | DOI | MR | Zbl

[4] A. K. Asboei, “A new characterization of $\mathrm{PGL}(2,p)$”, J. Algebra Appl., 12:7 (2013), 1350040 | DOI | MR | Zbl

[5] A. K. Asboei and S. S. Salehi, “Some alternating and symmetric groups and related graphs”, Beitr Algebra Geom., 59 (2018), 21–24 | DOI | MR | Zbl

[6] A. K. Asboei, S. S. Salehi, A. Iranmanesh and A. Tehranian, “A new characterization of sporadic simple groups by NSE and order”, J. Algebra Appl., 12:2 (2013), 1250158 | DOI | MR | Zbl

[7] A. K. Asboei and S. S. Salehi, “The small Ree group ${}^{2}G_{2}(3^{2n+1})$ and related graph”, Comment. Math. Univ. Carolin., 59:3 (2018), 271–276 | MR | Zbl

[8] A. K. Asboei and S. S. Salehi, “Recognizability of finite groups by Suzuki group”, Arch. Math. (Brno), 55 (2019), 225–228 | DOI | MR | Zbl

[9] P. J. Cameron, “The power graph of a finite group, II”, J. Group Theory, 13 (2010), 779–783 | DOI | MR | Zbl

[10] I. Chakrabarty, S. Ghosh and M. K. Sen, “Undirected power graphs of semigroups”, Semigroup Forum, 78 (2009), 410–426 | DOI | MR | Zbl

[11] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985 | MR | Zbl

[12] G. Frobenius, “Verallgemeinerung des Sylow'schen Satzes”, Berl. Ber., 1895, 981–993 (German) | Zbl

[13] A. Hamzeh and A. R. Ashrafi, “Automorphism groups of supergraphs of the power graph of a finite group”, European J. Combin., 60 (2017), 82–88 | DOI | MR | Zbl

[14] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin, 1967 | MR | Zbl

[15] A. Khosravi and B. Khosaravi, “Two new characterization of sporadic simple groups”, Pure Math. Appl., 16 (2005), 287–293 | MR | Zbl

[16] V. D. Mazurov and E. I. Khukhro, The Kourovka Notebook. Unsolved problems in group theory, 18th ed.

[17] L. Zhang and X. Liu, “Characterization of the projective general linear groups $\mathrm{PGL}(2,q)$ by their orders and degree patterns”, Int. J. Algebra Comput., 19 (2009), 873–889 | DOI | MR | Zbl