Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_30_2_a1, author = {A. K. Asboei and S. S. Salehi}, title = {Some results on the main supergraph of~finite~groups}, journal = {Algebra and discrete mathematics}, pages = {172--178}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/} }
A. K. Asboei; S. S. Salehi. Some results on the main supergraph of~finite~groups. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 172-178. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/
[1] A. K. Asboei and A. Iranmanesh, “A characterization of the linear groups $\mathrm{PSL}(2,p)$”, Czechoslovak Math. J., 64:2 (2014), 459–464 | DOI | MR | Zbl
[2] A. K. Asboei, “Characterizing $\mathrm{PSL}(2,r)$ by its order and the number of its Sylow $r$-subgroups”, J. Algebra Appl., 13:1 (2014), 1350065 | DOI | MR | Zbl
[3] A. K. Asboei, “Characterization of projective linear groups by the order of the normalizer of a Sylow subgroup”, Monatsh Math., 173 (2014), 309–314 | DOI | MR | Zbl
[4] A. K. Asboei, “A new characterization of $\mathrm{PGL}(2,p)$”, J. Algebra Appl., 12:7 (2013), 1350040 | DOI | MR | Zbl
[5] A. K. Asboei and S. S. Salehi, “Some alternating and symmetric groups and related graphs”, Beitr Algebra Geom., 59 (2018), 21–24 | DOI | MR | Zbl
[6] A. K. Asboei, S. S. Salehi, A. Iranmanesh and A. Tehranian, “A new characterization of sporadic simple groups by NSE and order”, J. Algebra Appl., 12:2 (2013), 1250158 | DOI | MR | Zbl
[7] A. K. Asboei and S. S. Salehi, “The small Ree group ${}^{2}G_{2}(3^{2n+1})$ and related graph”, Comment. Math. Univ. Carolin., 59:3 (2018), 271–276 | MR | Zbl
[8] A. K. Asboei and S. S. Salehi, “Recognizability of finite groups by Suzuki group”, Arch. Math. (Brno), 55 (2019), 225–228 | DOI | MR | Zbl
[9] P. J. Cameron, “The power graph of a finite group, II”, J. Group Theory, 13 (2010), 779–783 | DOI | MR | Zbl
[10] I. Chakrabarty, S. Ghosh and M. K. Sen, “Undirected power graphs of semigroups”, Semigroup Forum, 78 (2009), 410–426 | DOI | MR | Zbl
[11] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Clarendon, Oxford, 1985 | MR | Zbl
[12] G. Frobenius, “Verallgemeinerung des Sylow'schen Satzes”, Berl. Ber., 1895, 981–993 (German) | Zbl
[13] A. Hamzeh and A. R. Ashrafi, “Automorphism groups of supergraphs of the power graph of a finite group”, European J. Combin., 60 (2017), 82–88 | DOI | MR | Zbl
[14] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin, 1967 | MR | Zbl
[15] A. Khosravi and B. Khosaravi, “Two new characterization of sporadic simple groups”, Pure Math. Appl., 16 (2005), 287–293 | MR | Zbl
[16] V. D. Mazurov and E. I. Khukhro, The Kourovka Notebook. Unsolved problems in group theory, 18th ed.
[17] L. Zhang and X. Liu, “Characterization of the projective general linear groups $\mathrm{PGL}(2,q)$ by their orders and degree patterns”, Int. J. Algebra Comput., 19 (2009), 873–889 | DOI | MR | Zbl