Some results on the main supergraph of~finite~groups
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 172-178
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group. The main supergraph $\mathcal{S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong \mathrm{PSL}(2,p)$ or $\mathrm{PGL}(2,p)$ if and only if $\mathcal{S}(G)\cong \mathcal{S}(\mathrm{PSL}(2,p))$ or $\mathcal{S}(\mathrm{PGL}(2,p))$, respectively. Also, we will show that if $M$ is a sporadic simple group, then $G\cong M$ if only if $\mathcal{S}(G)\cong \mathcal{S}(M)$.
Keywords:
graph, main supergraph, finite groups, Thompson's problem.
@article{ADM_2020_30_2_a1,
author = {A. K. Asboei and S. S. Salehi},
title = {Some results on the main supergraph of~finite~groups},
journal = {Algebra and discrete mathematics},
pages = {172--178},
publisher = {mathdoc},
volume = {30},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/}
}
A. K. Asboei; S. S. Salehi. Some results on the main supergraph of~finite~groups. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 172-178. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a1/