Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_30_2_a0, author = {R. Aragona and A. D'Andrea}, title = {Normal form in {Hecke-Kiselman} monoids associated with simple oriented graphs}, journal = {Algebra and discrete mathematics}, pages = {161--171}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/} }
TY - JOUR AU - R. Aragona AU - A. D'Andrea TI - Normal form in Hecke-Kiselman monoids associated with simple oriented graphs JO - Algebra and discrete mathematics PY - 2020 SP - 161 EP - 171 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/ LA - en ID - ADM_2020_30_2_a0 ER -
R. Aragona; A. D'Andrea. Normal form in Hecke-Kiselman monoids associated with simple oriented graphs. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/
[1] R. Aragona and A. D'Andrea, “Hecke–Kiselman monoids of small cardinality”, Semigroup Forum, 86 (2013), 32–40 | DOI | MR | Zbl
[2] C. L. Barrett, H. S. Mortveit, and C. M. Reidys, “Elements of a theory of simulation II: Sequential dynamical systems”, Appl. Math. Comput., 107 (2000), 121–136 | MR | Zbl
[3] E. Collina and A. D'Andrea, “A graph-dynamical interpretation of Kiselman's semigroups”, J. Alg. Comb., 41 (2015), 1115–1132 | DOI | MR | Zbl
[4] L. Forsberg, Effective representations of Hecke-Kiselman monoids of type A, preprint, arXiv: 1205.0676v4
[5] O. Ganyushkin and V. Mazorchuk, “On Kiselman quotients of 0-Hecke monoids”, Int. Electron. J. Algebra, 10 (2011), 174–191 | MR | Zbl
[6] F. Hivert, A. Schilling, N. M. Thiéry, “The biHecke monoid of a finite Coxeter group”, 22nd International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2010, Discrete Math. Theor. Comput. Sci. Proc., 2010, 307–318 | MR | Zbl
[7] G. P. Huet, “Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems”, Journal of the ACM, 27 (1980), 797–821 | DOI | MR | Zbl
[8] C. O. Kiselman, “A semigroup of operators in convexity theory”, Trans. AMS, 354 (2002), 2035–2053 | DOI | MR | Zbl
[9] G. Kudryavtseva and V. Mazorchuk, “On Kiselman's semigroup”, Yokohama Math. J., 55 (2009), 21–46 | MR | Zbl
[10] A. Mȩcel and J. Okniński, “Growth alternative for Hecke–Kiselman monoids”, Publ. Mat., 63 (2019), 219–240 | DOI | MR
[11] A. Mȩcel and J. Okniński, “Gröbner basis and the automaton property of Hecke–Kiselman algebras”, Semigroup Forum, 99 (2019), 447–464 | DOI | MR
[12] M. H. A. Newman, “On theories with a combinatorial definition of “equivalence””, Ann. of Math., 43 (1942), 223–243 | DOI | MR | Zbl
[13] P. N. Norton, “$0$-Hecke algebras”, J. Austral. Math. Soc. (Series A), 27 (1979), 337–357 | DOI | MR
[14] J. Okniński, M. Wiertel, Combinatorics and structure of Hecke–Kiselman algebras, preprint, arXiv: 1904.12202 | MR
[15] R. Richardson and T. Springer, “The Bruhat order on symmetric varieties”, Geom. Dedic., 35 (1990), 389–436 | DOI | MR | Zbl