Normal form in Hecke-Kiselman monoids associated with simple oriented graphs
Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 161-171

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize Kudryavtseva and Mazorchuk's concept of a canonical form of elements [9] in Kiselman's semigroups to the setting of a Hecke-Kiselman monoid $\mathbf{HK}_\Gamma$ associated with a simple oriented graph $\Gamma$. We use confluence properties from [7] to associate with each element in $\mathbf{HK}_\Gamma$ a normal form; normal forms are not unique, and we show that they can be obtained from each other by a sequence of elementary commutations. We finally describe a general procedure to recover a (unique) lexicographically minimal normal form.
Keywords: simple oriented graph, Hecke-Kiselman monoid, normal form.
@article{ADM_2020_30_2_a0,
     author = {R. Aragona and A. D'Andrea},
     title = {Normal form in {Hecke-Kiselman} monoids associated with simple oriented graphs},
     journal = {Algebra and discrete mathematics},
     pages = {161--171},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/}
}
TY  - JOUR
AU  - R. Aragona
AU  - A. D'Andrea
TI  - Normal form in Hecke-Kiselman monoids associated with simple oriented graphs
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 161
EP  - 171
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/
LA  - en
ID  - ADM_2020_30_2_a0
ER  - 
%0 Journal Article
%A R. Aragona
%A A. D'Andrea
%T Normal form in Hecke-Kiselman monoids associated with simple oriented graphs
%J Algebra and discrete mathematics
%D 2020
%P 161-171
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/
%G en
%F ADM_2020_30_2_a0
R. Aragona; A. D'Andrea. Normal form in Hecke-Kiselman monoids associated with simple oriented graphs. Algebra and discrete mathematics, Tome 30 (2020) no. 2, pp. 161-171. http://geodesic.mathdoc.fr/item/ADM_2020_30_2_a0/