On growth of generalized Grigorchuk's~overgroups
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 97-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Grigorchuk's Overgroup $\widetilde{\mathcal{G}}$, is a branch group of intermediate growth. It contains the first Grigorchuk's torsion group $\mathcal{G}$ of intermediate growth constructed in 1980, but also has elements of infinite order. Its growth is substantially greater than the growth of $\mathcal{G}$. The group $\mathcal{G}$, corresponding to the sequence $(012)^\infty = 012012 \cdots$, is a member of the family $\{ G_\omega | \omega \in \Omega = \{ 0, 1, 2 \}^\mathbb{N} \}$ consisting of groups of intermediate growth when sequence $\omega$ is not eventually constant. Following this construction, we define the family $\{ \widetilde{G}_\omega, \omega \in \Omega \}$ of generalized overgroups. Then $\widetilde{\mathcal{G}} = \widetilde{G}_{(012)^\infty}$ and $G_\omega$ is a subgroup of $\widetilde{G}_\omega$ for each $\omega \in \Omega$. We prove, if $\omega$ is eventually constant, then $\widetilde{G}_\omega$ is of polynomial growth and if $\omega$ is not eventually constant, then $\widetilde{G}_\omega$ is of intermediate growth.
Keywords: growth of groups, intermediate growth, Grigorchuk group, growth bounds.
@article{ADM_2020_30_1_a8,
     author = {S. T. Samarakoon},
     title = {On growth of generalized {Grigorchuk's~overgroups}},
     journal = {Algebra and discrete mathematics},
     pages = {97--117},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a8/}
}
TY  - JOUR
AU  - S. T. Samarakoon
TI  - On growth of generalized Grigorchuk's~overgroups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 97
EP  - 117
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a8/
LA  - en
ID  - ADM_2020_30_1_a8
ER  - 
%0 Journal Article
%A S. T. Samarakoon
%T On growth of generalized Grigorchuk's~overgroups
%J Algebra and discrete mathematics
%D 2020
%P 97-117
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a8/
%G en
%F ADM_2020_30_1_a8
S. T. Samarakoon. On growth of generalized Grigorchuk's~overgroups. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 97-117. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a8/

[1] L. Bartholdi, “The growth of Grigorchuk's torsion group”, Int. Math. Res. Not. IMRN, 20 (1998), 1049–1054 | DOI | MR | Zbl

[2] L. Bartholdi, “A Wilson group of non-uniformly exponential growth”, C. R. Math. Acad. Sci. Paris, 336:7 (2003), 549–554 | DOI | MR | Zbl

[3] M. G. Benli, R. I. Grigorchuk, T. Nagnibeda, “Universal groups of intermediate growth and their invariant random subgroups”, Funct. Anal. Appl., 49:3 (2015), 159–174 | DOI | MR | Zbl

[4] L. Bartholdi, A. Erschler, “Groups of given intermediate word growth”, Ann. Inst. Fourier (Grenoble), 64:5 (2014), 2003–2036 | DOI | MR | Zbl

[5] Proc. Steklov Inst. Math., 231:4 (2000), 1–41 | MR | Zbl

[6] L. Bartholdi, R. I. Grigorchuk, “On parabolic subgroups and Hecke algebras of some fractal groups”, Serdica Math. J., 28:1 (2002), 47–90 | MR | Zbl

[7] A. Erschler, “Boundary behavior for groups of subexponential growth”, Ann. of Math., 160:3 (2004), 1183–1210 | DOI | MR

[8] A. Erschler, T. Zheng, “Growth of periodic Grigorchuk groups”, Invent. Math., 219 (2020), 1069–1155 | DOI | MR | Zbl

[9] D. Francoeur, “On the subexponential growth of groups acting on rooted trees”, Groups Geom. Dyn., 14:1 (2020), 1–24 | DOI | MR | Zbl

[10] R. I. Grigorchuk, “On Burnside's problem on periodic groups”, Funct. Anal. Appl., 14:1 (1980), 41–43 | DOI | MR | Zbl

[11] R. I. Grigorchuk, “On the Milnor problem of group growth”, Soviet Math. Dokl., 28:1 (1983), 23–26 | MR | Zbl

[12] R. I. Grigorchuk, “Degrees of growth of finitely generated groups and the theory of invariant means”, Izv. Akad. Nauk SSSR Ser. Mat., 48:5 (1984), 939–985 | MR

[13] R. I. Grigorchuk, “Construction of p-groups of intermediate growth that have a continuum of factor-groups”, Algebra Logika, 23:4 (1984), 383–394 | DOI | MR | Zbl

[14] R. I. Grigorchuk, “Degrees of growth of p-groups and torsion-free groups”, Math. USSR-Sb., 54:1 (1986), 185–205 | DOI | MR | Zbl

[15] R. I. Grigorchuk, “On growth in group theory”, Proceedings of the International Congress of Mathematicians (August 21-29, 1990), v. I, Math. Soc. Japan, Kyoto, Japan, 1991, 325–338 | MR | Zbl

[16] M. Kassabov, I. Pak, “Groups of Oscillating Intermediate Growth”, Ann. of Math., 177:3 (2013), 1113–1145 | DOI | MR | Zbl

[17] J. Milnor, “Problem 5603”, Amer. Math. Monthly, 75:6 (1968), 685–686 | MR

[18] R. Muchnik, I. Pak, “On growth of Grigorchuk groups”, Internat. J. Algebra Comput., 11:1 (2001), 1–17 | DOI | MR | Zbl

[19] V. Nekrashevych, “Palindromic subshifts and simple periodic groups of intermediate growth”, Ann. of Math., 187:3 (2018), 667–719 | DOI | MR | Zbl

[20] A. I. Schwarz, “A volume invariant of covering”, Dokl. Akad. Nauk SSSR, 105 (1955), 32–34 | MR