An elementary description of $K_1(R)$ without elementary matrices
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring with unit. Passing to the colimit with respect to the standard inclusions $\mathrm{GL}(n,R) \to \mathrm{GL}(n+1,R)$ (which add a unit vector as new last row and column) yields, by definition, the stable linear group $\mathrm{GL}(R)$; the same result is obtained, up to isomorphism, when using the “opposite” inclusions (which add a unit vector as new first row and column). In this note it is shown that passing to the colimit along both these families of inclusions simultaneously recovers the algebraic $K$-group $K_1(R) = \mathrm{GL}(R)/E(R)$ of $R$, giving an elementary description that does not involve elementary matrices explicitly.
Keywords: $K$-theory, elementary matrix.
Mots-clés : invertible matrix
@article{ADM_2020_30_1_a6,
     author = {T. H\"uttemann and Z. Zhang},
     title = {An elementary description of $K_1(R)$ without elementary matrices},
     journal = {Algebra and discrete mathematics},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a6/}
}
TY  - JOUR
AU  - T. Hüttemann
AU  - Z. Zhang
TI  - An elementary description of $K_1(R)$ without elementary matrices
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 79
EP  - 82
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a6/
LA  - en
ID  - ADM_2020_30_1_a6
ER  - 
%0 Journal Article
%A T. Hüttemann
%A Z. Zhang
%T An elementary description of $K_1(R)$ without elementary matrices
%J Algebra and discrete mathematics
%D 2020
%P 79-82
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a6/
%G en
%F ADM_2020_30_1_a6
T. Hüttemann; Z. Zhang. An elementary description of $K_1(R)$ without elementary matrices. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 79-82. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a6/

[1] Hyman Bass, Algebraic {$K$}-theory, W. A. Benjamin, Inc., New York–Amsterdam, 1968 | MR | Zbl