Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_30_1_a5, author = {P. Gladki and M. Marshall}, title = {Witt equivalence of function fields of conics}, journal = {Algebra and discrete mathematics}, pages = {63--78}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a5/} }
P. Gladki; M. Marshall. Witt equivalence of function fields of conics. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a5/
[1] J. K. Arason, R. Elman, W. Jacob, “Rigid elements, valuations, and realization of Witt rings”, J. Algebra, 110 (1987), 449–467 | DOI | MR | Zbl
[2] R. Baeza, R. Moresi, “On the Witt-equivalence of fields of characteristic 2”, J. Algebra, 92:2 (1985), 446–453 | DOI | MR | Zbl
[3] P. E. Conner, J. Hurrelbrink, Class number parity, Series in Pure Mathematics, 8, World Scientific, Singapore–New Jersey–Hong Kong, 1988 | DOI | MR | Zbl
[4] P. Gładki, M. Marshall, “The pp conjecture for spaces of orderings of rational conics”, J. Algebra Appl., 6 (2007), 245–257 | DOI | MR
[5] P. Gładki, M. Marshall, “Witt equivalence of function fields over global fields”, Trans. Amer. Math. Soc., 369 (2017), 7861–7881 | DOI | MR
[6] P. Gładki, M. Marshall, “Witt equivalence of function fields of curves over local fields”, Comm. Algebra, 45 (2017), 5002–5013 | DOI | MR
[7] N. Grenier-Boley, D. W. Hoffmann, “Isomorphism criteria for Witt rings of real fields. With appendix by Claus Scheiderer”, Forum Math., 25 (2013), 1–18 | DOI | MR | Zbl
[8] D. K. Harrison, Witt rings, University of Kentucky Notes, Lexington, Kentucky, 1970
[9] J. L. Kleinstein, A. Rosenberg, “Succinct and representational Witt rings”, Pacific J. Math., 86 (1980), 99–137 | DOI | MR | Zbl
[10] M. Knebusch, “Generic splitting of quadratic forms I”, Proc. London Math. Soc. (3), 33 (1976), 65–93 | DOI | MR | Zbl
[11] M. Knebusch, A. Rosenberg, R. Ware, “Structure of Witt rings and quotients of Abelian group rings”, Amer. J. Math., 94 (1972), 119–155 | DOI | MR | Zbl
[12] P. Koprowski, “Witt equivalence of algebraic function fields over real closed fields”, Math. Z., 242 (2002), 323–345 | DOI | MR | Zbl
[13] T.-Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl
[14] M. Marshall, Abstract Witt rings, Queen's Papers in Pure and Applied Math., 57, Queen's University, Kingston, Ontario, 1980 | MR | Zbl
[15] J. Milnor, D. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, 73, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl
[16] R. Perlis, K. Szymiczek, P. E. Conner, R. Litherland, “Matching Witts with global fields”, Contemp. Math., 155 (1994), 365–378 | DOI | MR
[17] K. Szymiczek, “Matching Witts locally and globally”, Math. Slovaca, 41 (1991), 315–330 | MR | Zbl
[18] K. Szymiczek, “Hilbert-symbol equivalence of number fields”, Tatra Mount. Math. Publ., 11 (1997), 7–16 | MR | Zbl
[19] E. Witt, “Gegenbeispiel zum Normensatz”, Math. Zeit., 39 (1934), 12–28 | MR
[20] E. Witt, “Theorie der quadratischen Formen in beliebigen Körpern”, Journal für die reine und angewandte Mathematik, 176 (1937), 31–44 | MR