Witt equivalence of function fields of conics
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 63-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two fields are Witt equivalent if, roughly speaking, they have the same quadratic form theory. Formally, that is to say that their Witt rings of symmetric bilinear forms are isomorphic. This equivalence is well understood only in a few rather specific classes of fields. Two such classes, namely function fields over global fields and function fields of curves over local fields, were investigated by the authors in their earlier works [5] and [6]. In the present work, which can be viewed as a sequel to the earlier papers, we discuss the previously obtained results in the specific case of function fields of conic sections, and apply them to provide a few theorems of a somewhat quantitive flavour shedding some light on the question of numbers of Witt non-equivalent classes of such fields.
Keywords: symmetric bilinear forms, quadratic forms, Witt equivalence of fields, function fields, conic sections, Abhyankar valuations.
Mots-clés : valuations
@article{ADM_2020_30_1_a5,
     author = {P. Gladki and M. Marshall},
     title = {Witt equivalence of function fields of conics},
     journal = {Algebra and discrete mathematics},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a5/}
}
TY  - JOUR
AU  - P. Gladki
AU  - M. Marshall
TI  - Witt equivalence of function fields of conics
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 63
EP  - 78
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a5/
LA  - en
ID  - ADM_2020_30_1_a5
ER  - 
%0 Journal Article
%A P. Gladki
%A M. Marshall
%T Witt equivalence of function fields of conics
%J Algebra and discrete mathematics
%D 2020
%P 63-78
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a5/
%G en
%F ADM_2020_30_1_a5
P. Gladki; M. Marshall. Witt equivalence of function fields of conics. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 63-78. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a5/

[1] J. K. Arason, R. Elman, W. Jacob, “Rigid elements, valuations, and realization of Witt rings”, J. Algebra, 110 (1987), 449–467 | DOI | MR | Zbl

[2] R. Baeza, R. Moresi, “On the Witt-equivalence of fields of characteristic 2”, J. Algebra, 92:2 (1985), 446–453 | DOI | MR | Zbl

[3] P. E. Conner, J. Hurrelbrink, Class number parity, Series in Pure Mathematics, 8, World Scientific, Singapore–New Jersey–Hong Kong, 1988 | DOI | MR | Zbl

[4] P. Gładki, M. Marshall, “The pp conjecture for spaces of orderings of rational conics”, J. Algebra Appl., 6 (2007), 245–257 | DOI | MR

[5] P. Gładki, M. Marshall, “Witt equivalence of function fields over global fields”, Trans. Amer. Math. Soc., 369 (2017), 7861–7881 | DOI | MR

[6] P. Gładki, M. Marshall, “Witt equivalence of function fields of curves over local fields”, Comm. Algebra, 45 (2017), 5002–5013 | DOI | MR

[7] N. Grenier-Boley, D. W. Hoffmann, “Isomorphism criteria for Witt rings of real fields. With appendix by Claus Scheiderer”, Forum Math., 25 (2013), 1–18 | DOI | MR | Zbl

[8] D. K. Harrison, Witt rings, University of Kentucky Notes, Lexington, Kentucky, 1970

[9] J. L. Kleinstein, A. Rosenberg, “Succinct and representational Witt rings”, Pacific J. Math., 86 (1980), 99–137 | DOI | MR | Zbl

[10] M. Knebusch, “Generic splitting of quadratic forms I”, Proc. London Math. Soc. (3), 33 (1976), 65–93 | DOI | MR | Zbl

[11] M. Knebusch, A. Rosenberg, R. Ware, “Structure of Witt rings and quotients of Abelian group rings”, Amer. J. Math., 94 (1972), 119–155 | DOI | MR | Zbl

[12] P. Koprowski, “Witt equivalence of algebraic function fields over real closed fields”, Math. Z., 242 (2002), 323–345 | DOI | MR | Zbl

[13] T.-Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, 67, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[14] M. Marshall, Abstract Witt rings, Queen's Papers in Pure and Applied Math., 57, Queen's University, Kingston, Ontario, 1980 | MR | Zbl

[15] J. Milnor, D. Husemoller, Symmetric bilinear forms, Ergebnisse der Mathematik und ihrer Grenzgebiete, 73, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[16] R. Perlis, K. Szymiczek, P. E. Conner, R. Litherland, “Matching Witts with global fields”, Contemp. Math., 155 (1994), 365–378 | DOI | MR

[17] K. Szymiczek, “Matching Witts locally and globally”, Math. Slovaca, 41 (1991), 315–330 | MR | Zbl

[18] K. Szymiczek, “Hilbert-symbol equivalence of number fields”, Tatra Mount. Math. Publ., 11 (1997), 7–16 | MR | Zbl

[19] E. Witt, “Gegenbeispiel zum Normensatz”, Math. Zeit., 39 (1934), 12–28 | MR

[20] E. Witt, “Theorie der quadratischen Formen in beliebigen Körpern”, Journal für die reine und angewandte Mathematik, 176 (1937), 31–44 | MR