Gentle $m$-Calabi--Yau tilted algebras
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 44-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the $m$-cluster-tilted algebras of type $\mathbb{A}$ and $\tilde{\mathbb{A}}$, we prove that a module $M$ is stable Cohen-Macaulay if and only if $\Omega^{m+1} \tau M \simeq M$.
Keywords:
2-Calabi–Yau tilted algebras, Jacobian algebras, Gentle algebras, derived category, Cohen-Macaulay modules, cluster-tilted algebras.
@article{ADM_2020_30_1_a4,
author = {A. Garcia Elsener},
title = {Gentle $m${-Calabi--Yau} tilted algebras},
journal = {Algebra and discrete mathematics},
pages = {44--62},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a4/}
}
A. Garcia Elsener. Gentle $m$-Calabi--Yau tilted algebras. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 44-62. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a4/