Gentle $m$-Calabi--Yau tilted algebras
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 44-62

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that all gentle 2-Calabi–Yau tilted algebras are Jacobian, moreover their bound quiver can be obtained via block decomposition. For two related families, the $m$-cluster-tilted algebras of type $\mathbb{A}$ and $\tilde{\mathbb{A}}$, we prove that a module $M$ is stable Cohen-Macaulay if and only if $\Omega^{m+1} \tau M \simeq M$.
Keywords: 2-Calabi–Yau tilted algebras, Jacobian algebras, Gentle algebras, derived category, Cohen-Macaulay modules, cluster-tilted algebras.
@article{ADM_2020_30_1_a4,
     author = {A. Garcia Elsener},
     title = {Gentle $m${-Calabi--Yau} tilted algebras},
     journal = {Algebra and discrete mathematics},
     pages = {44--62},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a4/}
}
TY  - JOUR
AU  - A. Garcia Elsener
TI  - Gentle $m$-Calabi--Yau tilted algebras
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 44
EP  - 62
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a4/
LA  - en
ID  - ADM_2020_30_1_a4
ER  - 
%0 Journal Article
%A A. Garcia Elsener
%T Gentle $m$-Calabi--Yau tilted algebras
%J Algebra and discrete mathematics
%D 2020
%P 44-62
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a4/
%G en
%F ADM_2020_30_1_a4
A. Garcia Elsener. Gentle $m$-Calabi--Yau tilted algebras. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 44-62. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a4/