On the lattice of weak topologies on the bicyclic monoid with adjoined zero
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 26-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hausdorff topology $\tau$ on the bicyclic monoid with adjoined zero $\mathcal{C}^0$ is called weak if it is contained in the coarsest inverse semigroup topology on $\mathcal{C}^0$. We show that the lattice $\mathcal{W}$ of all weak shift-continuous topologies on $\mathcal{C}^0$ is isomorphic to the lattice $\mathcal{SIF}^1\times\mathcal{SIF}^1$ where $\mathcal{SIF}^1$ is the set of all shift-invariant filters on $\omega$ with an attached element $1$ endowed with the following partial order: $\mathcal{F}\leq \mathcal{G}$ if and only if $\mathcal{G}=1$ or $\mathcal{F}\subset \mathcal{G}$. Also, we investigate cardinal characteristics of the lattice $\mathcal{W}$. In particular, we prove that $\mathcal{W}$ contains an antichain of cardinality $2^{\mathfrak{c}}$ and a well-ordered chain of cardinality $\mathfrak{c}$. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type $\mathfrak{t}$.
Keywords: lattice of topologies, bicyclic monoid, shift-continuous topology.
@article{ADM_2020_30_1_a3,
     author = {S. Bardyla and O. Gutik},
     title = {On the lattice of weak topologies on the bicyclic monoid with adjoined zero},
     journal = {Algebra and discrete mathematics},
     pages = {26--43},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/}
}
TY  - JOUR
AU  - S. Bardyla
AU  - O. Gutik
TI  - On the lattice of weak topologies on the bicyclic monoid with adjoined zero
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 26
EP  - 43
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/
LA  - en
ID  - ADM_2020_30_1_a3
ER  - 
%0 Journal Article
%A S. Bardyla
%A O. Gutik
%T On the lattice of weak topologies on the bicyclic monoid with adjoined zero
%J Algebra and discrete mathematics
%D 2020
%P 26-43
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/
%G en
%F ADM_2020_30_1_a3
S. Bardyla; O. Gutik. On the lattice of weak topologies on the bicyclic monoid with adjoined zero. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 26-43. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/

[1] O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952

[2] L. W. Anderson, R. P. Hunter and R. J. Koch, “Some results on stability in semigroups”, Trans. Amer. Math. Soc., 117 (1965), 521–529 | DOI | MR | Zbl

[3] L. Aubenhofer, D. Dikranjan and E. Martin-Peinador, “Locally Quasi-Convex Compatible Topologies on a Topological Group”, Axioms, 4:4 (2015), 436–458 | DOI

[4] T. Banakh, S. Dimitrova and O. Gutik, “The Rees-Suschkiewitsch Theorem for simple topological semigroups”, Mat. Stud., 31:2 (2009), 211–218 | MR | Zbl

[5] T. Banakh, S. Dimitrova and O. Gutik, “Embedding the bicyclic semigroup into countably compact topological semigroups”, Topology Appl., 157:18 (2010), 2803–2814 | DOI | MR | Zbl

[6] S. Bardyla, “Classifying locally compact semitopological polycyclic monoids”, Mat. Visn. Nauk. Tov. Im. Shevchenka, 13 (2016), 13–28 | Zbl

[7] S. Bardyla, “On universal objects in the class of graph inverse semigroups”, European Journal of Mathematics, 6 (2020), 4–13 | DOI | MR | Zbl

[8] S. Bardyla, “On locally compact semitopological graph inverse semigroups”, Matematychni Studii, 49:1 (2018), 19–28 | DOI | MR | Zbl

[9] S. Bardyla, “On locally compact shift-continuous topologies on the $\alpha$-bicyclic monoid”, Topological Algebra and its Applications, 6:1 (2018), 34–42 | DOI | MR | Zbl

[10] S. Bardyla, “Embedding of graph inverse semigroups into CLP-compact topological semigroups”, Topology Appl., 272 (2020), 107058 | DOI | MR | Zbl

[11] S. Bardyla, O. Gutik, “On a complete topological inverse polycyclic monoid”, Carpathian Math. Publ., 8:2 (2016), 183–194 | DOI | MR | Zbl

[12] S. Bardyla, A. Ravsky, “Closed subsets of compact-like topological spaces”, Applied General Topology, 21:2 (2020), 201–214 | DOI | MR | Zbl

[13] A. Berarducci, D. Dikranjan, M. Forti and S. Watson, “Cardinal invariants and independence results in the lattice of precompact group topologies”, J. Pure Appl., 126 (1998), 19–49 | DOI | MR | Zbl

[14] M. Bertman, T. West, “Conditionally compact bicyclic semitopological semigroups”, Proc. Roy. Irish Acad., A76 (1976), 219–226 | MR | Zbl

[15] W. Comfort, D. Remus, “Long chains of Hausdorff topological group topologies”, J. Pure Appl. Algebra, 70 (1991), 53–72 | DOI | MR | Zbl

[16] W. Comfort, D. Remus, “Long chains of topological group topologies—A continuation”, Topology Appl., 75 (1997), 51–79 | DOI | MR | Zbl

[17] D. Dikranjan, “The Lattice of Compact Representations of an infinite group”, Proceedings of Groups 93, Galway/St Andrews Conference, London Math. Soc. Lecture Notes, 211, Cambidge Univ. Press, Cambridge, UK, 1995, 138–155 | MR | Zbl

[18] D. Dikranjan, “On the poset of precompact group topologies”, Topology with Applications, Proceedings of the 1993 Szekszard (Hungary) Conference, Bolyai Society Mathematical Studies, 4, ed. Czaszar A., Elsevier, Amsterdam, The Netherlands, 1995, 135–149 | MR

[19] D. Dikranjan, “Chains of pseudocompact group topologies”, J. Pure Appl. Algebra, 124 (1998), 65–100 | DOI | MR | Zbl

[20] E. K. van Douwen, “The integers and topology”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 111–167 | MR

[21] C. Eberhart, J. Selden, “On the closure of the bicyclic semigroup”, Trans. Amer. Math. Soc., 144 (1969), 115–126 | DOI | MR | Zbl

[22] R. Engelking, General Topology, 2nd ed., Heldermann, Berlin, 1989 | MR | Zbl

[23] O. Gutik, “On the dichotomy of a locally compact semitopological bicyclic monoid with adjoined zero”, Visn. L'viv. Univ., Ser. Mekh.-Mat., 80 (2015), 33–41

[24] O. Gutik, “On locally compact semitopological 0-bisimple inverse $\omega$-semigroups”, Topol. Algebra Appl., 6:1 (2018), 77–101 | MR | Zbl

[25] O. Gutik, D. Repovš, “On countably compact $0$-simple topological inverse semigroups”, Semigroup Forum, 75:2 (2007), 464–469 | DOI | MR | Zbl

[26] J. A. Hildebrant, R. J. Koch, “Swelling actions of $\Gamma$-compact semigroups”, Semigroup Forum, 33 (1986), 65–85 | DOI | MR | Zbl

[27] K. Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, 102, North-Holland Publishing Company, 1980 | MR | Zbl

[28] M. V. Lawson, “Primitive partial permutation representations of the polycyclic monoids and branching function systems”, Period. Math. Hungar., 58 (2009), 189–207 | DOI | MR | Zbl

[29] J. van Mill, “An introduction to $\beta(\omega)$”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 503–568 | MR

[30] T. Mokrytskyi, “On the dichotomy of a locally compact semitopological monoid of order isomorphisms between principal filters of $\mathbb{N}^n$ with adjoined zero”, Visnyk of the Lviv Univ. Series Mech. Math., 87 (2019), 37–45 | DOI