On the lattice of weak topologies on the bicyclic monoid with adjoined zero
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 26-43

Voir la notice de l'article provenant de la source Math-Net.Ru

A Hausdorff topology $\tau$ on the bicyclic monoid with adjoined zero $\mathcal{C}^0$ is called weak if it is contained in the coarsest inverse semigroup topology on $\mathcal{C}^0$. We show that the lattice $\mathcal{W}$ of all weak shift-continuous topologies on $\mathcal{C}^0$ is isomorphic to the lattice $\mathcal{SIF}^1\times\mathcal{SIF}^1$ where $\mathcal{SIF}^1$ is the set of all shift-invariant filters on $\omega$ with an attached element $1$ endowed with the following partial order: $\mathcal{F}\leq \mathcal{G}$ if and only if $\mathcal{G}=1$ or $\mathcal{F}\subset \mathcal{G}$. Also, we investigate cardinal characteristics of the lattice $\mathcal{W}$. In particular, we prove that $\mathcal{W}$ contains an antichain of cardinality $2^{\mathfrak{c}}$ and a well-ordered chain of cardinality $\mathfrak{c}$. Moreover, there exists a well-ordered chain of first-countable weak topologies of order type $\mathfrak{t}$.
Keywords: lattice of topologies, bicyclic monoid, shift-continuous topology.
@article{ADM_2020_30_1_a3,
     author = {S. Bardyla and O. Gutik},
     title = {On the lattice of weak topologies on the bicyclic monoid with adjoined zero},
     journal = {Algebra and discrete mathematics},
     pages = {26--43},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/}
}
TY  - JOUR
AU  - S. Bardyla
AU  - O. Gutik
TI  - On the lattice of weak topologies on the bicyclic monoid with adjoined zero
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 26
EP  - 43
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/
LA  - en
ID  - ADM_2020_30_1_a3
ER  - 
%0 Journal Article
%A S. Bardyla
%A O. Gutik
%T On the lattice of weak topologies on the bicyclic monoid with adjoined zero
%J Algebra and discrete mathematics
%D 2020
%P 26-43
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/
%G en
%F ADM_2020_30_1_a3
S. Bardyla; O. Gutik. On the lattice of weak topologies on the bicyclic monoid with adjoined zero. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 26-43. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a3/