Comaximal factorization in a commutative Bezout ring
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 150-160
Voir la notice de l'article provenant de la source Math-Net.Ru
We study an analogue of unique factorization rings in the case of an elementary divisor domain.
Keywords:
Bezout ring, clean ring, neat ring, elementary divisor ring, stable range one, stable range two, neat range one, pseudo-irreducible element.
@article{ADM_2020_30_1_a11,
author = {B. Zabavsky and O. Romaniv and B. Kuznitska and T. Hlova},
title = {Comaximal factorization in a commutative {Bezout} ring},
journal = {Algebra and discrete mathematics},
pages = {150--160},
publisher = {mathdoc},
volume = {30},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a11/}
}
TY - JOUR AU - B. Zabavsky AU - O. Romaniv AU - B. Kuznitska AU - T. Hlova TI - Comaximal factorization in a commutative Bezout ring JO - Algebra and discrete mathematics PY - 2020 SP - 150 EP - 160 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a11/ LA - en ID - ADM_2020_30_1_a11 ER -
B. Zabavsky; O. Romaniv; B. Kuznitska; T. Hlova. Comaximal factorization in a commutative Bezout ring. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 150-160. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a11/