Modules with minimax Cousin cohomologies
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 143-149

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative Noetherian ring with non-zero identity and let $X$ be an arbitrary $R$-module. In this paper, we show that if all the cohomology modules of the Cousin complex for $X$ are minimax, then the following hold for any prime ideal $\mathfrak{p}$ of $R$ and for every integer $n$ less than $X$—the height of $\mathfrak{p}$: (i) the $n$th Bass number of $X$ with respect to $\mathfrak{p}$ is finite; (ii) the $n$th local cohomology module of $X_\mathfrak{p}$ with respect to $\mathfrak{p}R_\mathfrak{p}$ is Artinian.
Keywords: Artinian modules, Bass numbers, Cousin complexes, local cohomology modules, minimax modules.
@article{ADM_2020_30_1_a10,
     author = {A. Vahidi},
     title = {Modules with minimax {Cousin} cohomologies},
     journal = {Algebra and discrete mathematics},
     pages = {143--149},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a10/}
}
TY  - JOUR
AU  - A. Vahidi
TI  - Modules with minimax Cousin cohomologies
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 143
EP  - 149
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a10/
LA  - en
ID  - ADM_2020_30_1_a10
ER  - 
%0 Journal Article
%A A. Vahidi
%T Modules with minimax Cousin cohomologies
%J Algebra and discrete mathematics
%D 2020
%P 143-149
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a10/
%G en
%F ADM_2020_30_1_a10
A. Vahidi. Modules with minimax Cousin cohomologies. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 143-149. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a10/