On the edge-Wiener index of the disjunctive product of simple graphs
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 1-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The edge-Wiener index of a simple connected graph $G$ is defined as the sum of distances between all pairs of edges of $G$ where the distance between two edges in $G$ is the distance between the corresponding vertices in the line graph of $G$. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles.
Keywords: distance in graphs, edge-Wiener index, disjunctive product of graphs.
@article{ADM_2020_30_1_a1,
     author = {M. Azari and A. Iranmanesh},
     title = {On the {edge-Wiener} index of the disjunctive product of simple graphs},
     journal = {Algebra and discrete mathematics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/}
}
TY  - JOUR
AU  - M. Azari
AU  - A. Iranmanesh
TI  - On the edge-Wiener index of the disjunctive product of simple graphs
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 1
EP  - 14
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/
LA  - en
ID  - ADM_2020_30_1_a1
ER  - 
%0 Journal Article
%A M. Azari
%A A. Iranmanesh
%T On the edge-Wiener index of the disjunctive product of simple graphs
%J Algebra and discrete mathematics
%D 2020
%P 1-14
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/
%G en
%F ADM_2020_30_1_a1
M. Azari; A. Iranmanesh. On the edge-Wiener index of the disjunctive product of simple graphs. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/