On the edge-Wiener index of the disjunctive product of simple graphs
Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 1-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

The edge-Wiener index of a simple connected graph $G$ is defined as the sum of distances between all pairs of edges of $G$ where the distance between two edges in $G$ is the distance between the corresponding vertices in the line graph of $G$. In this paper, we study the edge-Wiener index under the disjunctive product of graphs and apply our results to compute the edge-Wiener index for the disjunctive product of paths and cycles.
Keywords: distance in graphs, edge-Wiener index, disjunctive product of graphs.
@article{ADM_2020_30_1_a1,
     author = {M. Azari and A. Iranmanesh},
     title = {On the {edge-Wiener} index of the disjunctive product of simple graphs},
     journal = {Algebra and discrete mathematics},
     pages = {1--14},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/}
}
TY  - JOUR
AU  - M. Azari
AU  - A. Iranmanesh
TI  - On the edge-Wiener index of the disjunctive product of simple graphs
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 1
EP  - 14
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/
LA  - en
ID  - ADM_2020_30_1_a1
ER  - 
%0 Journal Article
%A M. Azari
%A A. Iranmanesh
%T On the edge-Wiener index of the disjunctive product of simple graphs
%J Algebra and discrete mathematics
%D 2020
%P 1-14
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/
%G en
%F ADM_2020_30_1_a1
M. Azari; A. Iranmanesh. On the edge-Wiener index of the disjunctive product of simple graphs. Algebra and discrete mathematics, Tome 30 (2020) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/ADM_2020_30_1_a1/

[1] M. Azari and A. Iranmanesh, “Computation of the edge Wiener indices of the sum of graphs”, Ars Combin., 100 (2011), 113–128 | MR | Zbl

[2] M. Azari and A. Iranmanesh, “Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori”, Topics in Chemical Graph Theory, ed. I. Gutman, Univ. Kragujevac, Kragujevac, 2014, 69–90

[3] M. Azari and A. Iranmanesh, “The second edge-Wiener index of some composite graphs”, Miskolc Math. Notes, 15:2 (2014), 305–316 | DOI | MR | Zbl

[4] M. Azari and A. Iranmanesh, “Edge-Wiener type invariants of splices and links of graphs”, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77:3 (2015), 143–154 | MR | Zbl

[5] M. Azari and A. Iranmanesh, “Clusters and various versions of Wiener-type invariants”, Kragujevac J. Math., 39:2 (2015), 155–171 | DOI | MR | Zbl

[6] M. Azari, A. Iranmanesh and A. Tehranian, “Computation of the first edge Wiener index of a composition of graphs”, Studia Univ. Babes Bolyai Chem., 55:4 (2010), 183–196 | MR

[7] M. Azari, A. Iranmanesh and A. Tehranian, “A method for calculating an edge version of the Wiener number of a graph operation”, Util. Math., 87 (2012), 151–164 | MR | Zbl

[8] F. Cataldo, O. Ori and A. Graovac, “Wiener index of 1-pentagon fullerenic infinite lattice”, Int. J. Chem. Model., 2 (2010), 165–180

[9] P. Dankelman, I. Gutman, S. Mukwembi and H. C. Swart, “The edge Wiener index of a graph”, Discrete Math., 309 (2009), 3452–3457 | DOI | MR | Zbl

[10] M. R. Darafsheh and M. H. Khalifeh, “Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer”, Ars Combin., 100 (2011), 289–298 | MR | Zbl

[11] M. V. Diudea, “Wiener index of dendrimers”, MATCH Commun. Math. Comput. Chem., 32 (1995), 71–83 | Zbl

[12] M. V. Diudea, QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, 2001

[13] T. Došlić, “Splices, links and their degree-weighted Wiener polynomials”, Graph Theory Notes N.Y., 48 (2005), 47–55 | MR

[14] T. Došlić, “Vertex-weighted Wiener polynomials for composite graphs”, Ars Math. Contemp., 1:1 (2008), 66–80 | DOI | MR

[15] A. Graovac and T. Pisanski, “On the Wiener index of a graph”, J. Math. Chem., 8 (1991), 53–62 | DOI | MR

[16] I. Gutman and N. Trinajstić, “Graph theory and molecular orbitals. Total $\pi $-electron energy of alternant hydrocarbons”, Chem. Phys. Lett., 17 (1972), 535–538 | DOI

[17] W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition, John Wiley Sons, New York, 2000

[18] A. Iranmanesh and M. Azari, “Edge-Wiener descriptors in chemical graph theory: A survey”, Curr. Org. Chem., 19:3 (2015), 219–239 | DOI

[19] A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, “The edge versions of the Wiener index”, MATCH Commun. Math. Comput. Chem., 61 (2009), 663–672 | MR | Zbl

[20] M. H. Khalifeh, H. Yousefi-Azari and A. R. Ashrafi, “The first and second Zagreb indices of some graph operations”, Discrete Appl. Math., 157 (2009), 804–811 | DOI | MR | Zbl

[21] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, “Some new results on distance-based graph invariants”, European J. Combin., 30 (2009), 1149–1163 | DOI | MR | Zbl

[22] M. J. Nadjafi-Arani, H. Khodashenas and A. R. Ashrafi, “Relationship between edge Szeged and edge Wiener indices of graphs”, Glas. Mat. Ser. III, 47 (2012), 21–29 | DOI | MR | Zbl

[23] H. Wiener, “Structural determination of paraffin boiling points”, J. Am. Chem. Soc., 69:1 (1947), 17–20 | DOI

[24] H. Yousefi-Azari, M. H. Khalifeh and A. R. Ashrafi, “Calculating the edge Wiener and edge Szeged indices of graphs”, J. Comput. Appl. Math., 235:16 (2011), 4866–4870 | DOI | MR | Zbl