On a common generalization of symmetric rings and quasi duo rings
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 249-258

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J(R)$ denote the Jacobson radical of a ring $R$. We call a ring $R$ as $J$-symmetric if for any $a,b, c\in R$, $abc=0$ implies $bac\in J(R)$. It turns out that $J$-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left $\mathrm{SF}$-rings are generalized.
Keywords: symmetric ring, Jacobson radical, $J$-symmetric ring.
@article{ADM_2020_29_2_a9,
     author = {T. Subedi and D. Roy},
     title = {On a common generalization of symmetric rings and quasi duo rings},
     journal = {Algebra and discrete mathematics},
     pages = {249--258},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/}
}
TY  - JOUR
AU  - T. Subedi
AU  - D. Roy
TI  - On a common generalization of symmetric rings and quasi duo rings
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 249
EP  - 258
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/
LA  - en
ID  - ADM_2020_29_2_a9
ER  - 
%0 Journal Article
%A T. Subedi
%A D. Roy
%T On a common generalization of symmetric rings and quasi duo rings
%J Algebra and discrete mathematics
%D 2020
%P 249-258
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/
%G en
%F ADM_2020_29_2_a9
T. Subedi; D. Roy. On a common generalization of symmetric rings and quasi duo rings. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 249-258. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/