On a common generalization of symmetric rings and quasi duo rings
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 249-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $J(R)$ denote the Jacobson radical of a ring $R$. We call a ring $R$ as $J$-symmetric if for any $a,b, c\in R$, $abc=0$ implies $bac\in J(R)$. It turns out that $J$-symmetric rings are a common generalization of left (right) quasi-duo rings and generalized weakly symmetric rings. Various properties of these rings are established and some results on exchange rings and the regularity of left $\mathrm{SF}$-rings are generalized.
Keywords: symmetric ring, Jacobson radical, $J$-symmetric ring.
@article{ADM_2020_29_2_a9,
     author = {T. Subedi and D. Roy},
     title = {On a common generalization of symmetric rings and quasi duo rings},
     journal = {Algebra and discrete mathematics},
     pages = {249--258},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/}
}
TY  - JOUR
AU  - T. Subedi
AU  - D. Roy
TI  - On a common generalization of symmetric rings and quasi duo rings
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 249
EP  - 258
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/
LA  - en
ID  - ADM_2020_29_2_a9
ER  - 
%0 Journal Article
%A T. Subedi
%A D. Roy
%T On a common generalization of symmetric rings and quasi duo rings
%J Algebra and discrete mathematics
%D 2020
%P 249-258
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/
%G en
%F ADM_2020_29_2_a9
T. Subedi; D. Roy. On a common generalization of symmetric rings and quasi duo rings. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 249-258. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a9/

[1] E. Akalan, L. Vas, “Classes of almost clean rings”, Algebr. Represent. Theory, 16:3 (2013), 843–857 | DOI | MR | Zbl

[2] D. D. Anderson, V. P. Camillo, “Commutative rings whose elements are a sum of a unit and idempotent”, Comm. Algebra, 30:7 (2002), 3327–3336 | DOI | MR | Zbl

[3] V. P. Camillo, H. P. Yu, “Exchange rings, units and idempotents”, Comm. Algebra, 22 (1994), 4737–4749 | DOI | MR | Zbl

[4] G. Kafkas, B. Ungor, S. Halicioglu, A. Harmanci, “Generalized symmetric rings”, Algebra Discrete Math., 12:2 (2011), 72–84 | MR | Zbl

[5] L. Ouyang, H. Chen, “On weak symmetric rings”, Comm. Algebra, 38:2 (2010), 697–713 | DOI | MR | Zbl

[6] M. B. Rege, “On von Neumann regular rings and SF-rings”, Math. Japonica, 31:6 (1986), 927–936 | MR | Zbl

[7] W. K. Nicholson, “Lifting idempotents and exchange rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[8] Y. Qu, J. Wei, “Some notes on nil-semicommutative rings”, Turk. J. Math., 38 (2014), 212–224 | DOI | MR | Zbl

[9] T. Subedi, A. M. Buhphang, “On SF-rings and regular rings”, Kyungpook Math. J., 53:3 (2013), 397–406 | DOI | MR | Zbl

[10] V. S. Ramamurthy, “On the injectivity and flatness of certain cyclic modules”, Proc. Amer. Math. Soc., 48 (1975), 21–25 | DOI | MR

[11] J.Wei, “Generalized weakly symmetric rings”, J. Pure Appl. Algebra, 218 (2014), 1594–1603 | DOI | MR | Zbl

[12] H. P. Yu, “On quasi duo rings”, Glasg. Math. J., 37 (1995), 21–31 | DOI | MR

[13] H. P. Yu, “Stable range one for exchange rings”, J. Pure Appl. Algebra, 98 (1995), 105–109 | DOI | MR | Zbl

[14] H. Zhou, “Left SF-rings and regular rings”, Comm. Algebra, 35 (2007), 3842–3850 | DOI | MR | Zbl