Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_2_a7, author = {H. Mostafanasab and \"U. Tekir and G. Ulucak}, title = {Uniformly $2$-absorbing primary ideals of commutative rings}, journal = {Algebra and discrete mathematics}, pages = {221--240}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a7/} }
TY - JOUR AU - H. Mostafanasab AU - Ü. Tekir AU - G. Ulucak TI - Uniformly $2$-absorbing primary ideals of commutative rings JO - Algebra and discrete mathematics PY - 2020 SP - 221 EP - 240 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a7/ LA - en ID - ADM_2020_29_2_a7 ER -
H. Mostafanasab; Ü. Tekir; G. Ulucak. Uniformly $2$-absorbing primary ideals of commutative rings. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 221-240. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a7/
[1] D. F. Anderson and A. Badawi, “On $n$-absorbing ideals of commutative rings”, Comm. Algebra, 39 (2011), 1646–1672
[2] D. D. Anderson, K. R. Knopp and R. L. Lewin, “Ideals generated by powers of elements”, Bull. Austral. Math. Soc., 49 (1994), 373–376
[3] A. Badawi, “On $2$-absorbing ideals of commutative rings”, Bull. Austral. Math. Soc., 75 (2007), 417–429
[4] A. Badawi, Ü. Tekir and E. Yetkin, “On $2$-absorbing primary ideals in commutative rings”, Bull. Korean Math. Soc., 51:4 (2014), 1163–1173
[5] A. Badawi and A. Yousefian Darani, “On weakly $2$-absorbing ideals of commutative rings”, Houston J. Math., 39 (2013), 441–452
[6] J. A. Cox and A. J. Hetzel, “Uniformly primary ideals”, J. Pure Appl. Algebra, 212 (2008), 1–8
[7] M. Hochster, “Criteria for equality of ordinary and symbolic powers of primes”, Math. Z., 133 (1973), 53–65
[8] J. Hukaba, Commutative rings with zero divisors, Marcel Dekker, Inc., New York, 1988
[9] H. Mostafanasab, E. Yetkin, U. Tekir and A. Yousefian Darani, “On $2$-absorbing primary submodules of modules over commutative rings”, An. Şt. Univ. Ovidius Constanta, in press
[10] P. Nasehpour, On the Anderson-Badawi $\omega_{R[X]}(I[X])=\omega_R(I)$ conjecture, 2014, arXiv: arXiv:1401.0459
[11] D. G. Northcott, “A generalization of a theorem on the content of polynomials”, Proc. Cambridge Phil. Soc., 55 (1959), 282–288
[12] J. Ohm and D. E. Rush, “Content modules and algebras”, Math. Scand., 31 (1972), 49–68
[13] D. E. Rush, “Content algebras”, Canad. Math. Bull., 21:3 (1978), 329–334
[14] R. Y. Sharp, Steps in commutative algebra, 2nd. ed., Cambridge University Press, Cambridge, 2000
[15] A. Yousefian Darani and F. Soheilnia, “$2$-absorbing and weakly $2$-absorbing submoduels”, Thai J. Math., 9:3 (2011), 577–584
[16] A. Yousefian Darani and F. Soheilnia, “On $n$-absorbing submodules”, Math. Comm., 17 (2012), 547–557