Attached primes and annihilators of top local cohomology modules defined by a pair of ideals
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 211-220

Voir la notice de l'article provenant de la source Math-Net.Ru

Assume that $R$ is a complete Noetherian local ring and $M$ is a non-zero finitely generated $R$-module of dimension $n=\dim(M)\geq 1$. It is shown that any non-empty subset $T$ of $\mathrm{Assh}(M)$ can be expressed as the set of attached primes of the top local cohomology modules $H_{I,J}^n(M)$ for some proper ideals $I,J$ of $R$. Moreover, for ideals $I, J=\bigcap_ {\mathfrak p\in \mathrm{Att}_R(H_{I}^n(M))}\mathfrak p$ and $J'$ of $R$ it is proved that $T=\mathrm{Att}_R(H_{I,J}^n(M))=\mathrm{Att}_R(H_{I,J'}^n(M))$ if and only if $J'\subseteq J$. Let $H_{I,J}^n(M)\neq 0$. It is shown that there exists $Q\in \mathrm{Supp}(M)$ such that $\dim(R/Q)=1$ and $H_Q^n(R/{\mathfrak p})\neq 0$, for each $\mathfrak p \in \mathrm{Att}_R(H_{I,J}^n(M))$. In addition, we prove that if $I$ and $J$ are two proper ideals of a Noetherian local ring $R$, then $\mathrm{Ann}_R(H_{I,J}^{n}(M))=\mathrm{Ann}_R(M/{T_R(I,J,M)})$, where $T_R(I,J,M)$ is the largest submodule of $M$ with $\mathrm{cd}(I,J,T_R(I,J,M))\mathrm{cd}(I,J,M)$, here $\mathrm{cd}(I,J,M)$ is the cohomological dimension of $M$ with respect to $I$ and $J$. This result is a generalization of [1, Theorem 2.3] and [2, Theorem 2.6].
Keywords: associated prime ideals, attached prime ideals, top local cohomology modules.
@article{ADM_2020_29_2_a6,
     author = {S. Karimi and Sh. Payrovi},
     title = {Attached primes and annihilators of top local cohomology modules defined by a pair of ideals},
     journal = {Algebra and discrete mathematics},
     pages = {211--220},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a6/}
}
TY  - JOUR
AU  - S. Karimi
AU  - Sh. Payrovi
TI  - Attached primes and annihilators of top local cohomology modules defined by a pair of ideals
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 211
EP  - 220
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a6/
LA  - en
ID  - ADM_2020_29_2_a6
ER  - 
%0 Journal Article
%A S. Karimi
%A Sh. Payrovi
%T Attached primes and annihilators of top local cohomology modules defined by a pair of ideals
%J Algebra and discrete mathematics
%D 2020
%P 211-220
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a6/
%G en
%F ADM_2020_29_2_a6
S. Karimi; Sh. Payrovi. Attached primes and annihilators of top local cohomology modules defined by a pair of ideals. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 211-220. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a6/