The containment poset of type $A$ Hessenberg varieties
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 195-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

Flag varieties are well-known algebraic varieties with many important geometric, combinatorial, and representation theoretic properties. A Hessenberg variety is a subvariety of a flag variety identified by two parameters: an element $X$ of the Lie algebra $\mathfrak{g}$ and a Hessenberg subspace $H\subseteq \mathfrak{g}$. This paper considers when two Hessenberg spaces define the same Hessenberg variety when paired with $X$. To answer this question we present the containment poset $\mathcal{P}_X$ of type $A$ Hessenberg varieties with a fixed first parameter $X$ and give a simple and elegant proof that if $X$ is not a multiple of the element $\mathbf 1$ then the Hessenberg spaces containing the Borel subalgebra determine distinct Hessenberg varieties. Lastly we give a natural involution on $\mathcal{P}_X$ that induces a homeomorphism of varieties and prove additional properties of $\mathcal{P}_X$ when $X$ is a regular nilpotent element.
Keywords: Hessenberg variety, root space, poset.
@article{ADM_2020_29_2_a5,
     author = {E. Drellich},
     title = {The containment poset of type $A$ {Hessenberg} varieties},
     journal = {Algebra and discrete mathematics},
     pages = {195--210},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a5/}
}
TY  - JOUR
AU  - E. Drellich
TI  - The containment poset of type $A$ Hessenberg varieties
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 195
EP  - 210
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a5/
LA  - en
ID  - ADM_2020_29_2_a5
ER  - 
%0 Journal Article
%A E. Drellich
%T The containment poset of type $A$ Hessenberg varieties
%J Algebra and discrete mathematics
%D 2020
%P 195-210
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a5/
%G en
%F ADM_2020_29_2_a5
E. Drellich. The containment poset of type $A$ Hessenberg varieties. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 195-210. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a5/

[1] Hiraku Abe, Megumi Harada, Tatsuya Horiguchi, and Mikiya Masuda, The cohomology rings of regular nilpotent Hessenberg varieties in Lie type A, preprint, 2016, arXiv: 1512.09072

[2] Hiraku Abe, Tatsuya Horiguchi, and Mikiya Masuda, The cohomology rings of regular semisimple Hessenberg varieties for $h=(h(1),n,?,n)$, preprint, 2017, arXiv: 1704.00934

[3] F. De Mari, C. Procesi, and M. A. Shayman, “Hessenberg varieties”, Trans. Amer. Math. Soc., 332:2 (1992), 529–534

[4] Elizabeth Drellich, “Monk's rule and Giambelli's formula for Peterson varieties of all Lie types”, J. Algebraic Combin., 41:2 (2015), 539–575

[5] Elizabeth J Drellich, Combinatorics of Equivariant Cohomology: Flags and Regular Nilpotent Hessenberg Varieties, PhD thesis, University of Massachusetts, Amherst, 2015

[6] Megumi Harada and Julianna Tymoczko, “Poset pinball, GKM-compatible subspaces, and Hessenberg varieties”, J. Math. Soc. Japan, 69:3 (2017), 945–994

[7] Erik Insko and Julianna Tymoczko, “Intersection theory of the Peterson variety and certain singularities of Schubert varieties”, Geom. Dedicata, 180 (2016), 95–116

[8] Erik Insko and Alexander Yong, “Patch ideals and Peterson varieties”, Transform. Groups, 17:4 (2012), 1011–1036

[9] Dale Peterson, Quantum cohomology of $G/P$, Lecture Course, M.I.T., Spring Term 1997

[10] Martha Precup, “Affine pavings of Hessenberg varieties for semisimple groups”, Selecta Math. (N.S.), 19:4 (2013), 903–922

[11] John Shareshian and Michelle L. Wachs, “Chromatic quasisymmetric functions and Hessenberg varieties”, Configuration spaces, CRM Series, 14, Ed. Norm., Pisa, 2012, 433–460

[12] T. A. Springer, “A construction of representations of Weyl groups”, Inventiones mathematicae, 44 (1978), 279–293

[13] Julianna S. Tymoczko, “Hessenberg varieties are not pure dimensional”, Pure Appl. Math. Q., 2:3, Special Issue: In honor of Robert D. MacPherson. Part 1 (2006), 779–794

[14] Julianna S. Tymoczko, “Linear conditions imposed on flag varieties”, Amer. J. Math., 128:6 (2006), 1587–1604

[15] Julianna S. Tymoczko, “Paving Hessenberg varieties by affines”, Selecta Math. (N.S.), 13:2 (2007), 353–367