Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_2_a4, author = {V. A. {\CYRS}hupordia and L. A. Kurdachenko and N. N. Semko}, title = {On the structure of {Leibniz} algebras whose subalgebras are ideals or core-free}, journal = {Algebra and discrete mathematics}, pages = {180--194}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/} }
TY - JOUR AU - V. A. Сhupordia AU - L. A. Kurdachenko AU - N. N. Semko TI - On the structure of Leibniz algebras whose subalgebras are ideals or core-free JO - Algebra and discrete mathematics PY - 2020 SP - 180 EP - 194 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/ LA - en ID - ADM_2020_29_2_a4 ER -
%0 Journal Article %A V. A. Сhupordia %A L. A. Kurdachenko %A N. N. Semko %T On the structure of Leibniz algebras whose subalgebras are ideals or core-free %J Algebra and discrete mathematics %D 2020 %P 180-194 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/ %G en %F ADM_2020_29_2_a4
V. A. Сhupordia; L. A. Kurdachenko; N. N. Semko. On the structure of Leibniz algebras whose subalgebras are ideals or core-free. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 180-194. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/
[1] A. M. Bloh, “On a generalization of the concept of Lie algebra”, Dokl. AN SSSR, 165 (1965), 471–473
[2] A. M. Bloh, “Cartan-Eilenberg homology theory for a generalized class of Lie algebras”, Dokl. AN SSSR, 175 (1967), 266–268
[3] A. M. Bloh, “A certain generalization of the concept of Lie algebra”, Moskov. Gos. Ped. Inst., Uch. Zap., 375 (1971), 9–20
[4] J.-L. Loday, “Une version non commutative des algebres de Lie; les algebras de Leibniz”, Enseign. Math., 39 (1993), 269–293
[5] J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer, Berlin, 1998
[6] V. A. Chupordia, L. A. Kurdachenko, I.Ya. Subbotin, “On some “minimal” Leibniz algebras”, Journal of Algebra and its Application, 16:2 (2017)
[7] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “The Leibniz algebras whose subalgebras are ideals”, Open Math., 15 (2017), 92–100
[8] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “The Leibniz algebras whose subalgebras are ideals”, Dopov. Nac. Akad. Nauk. Ukr., 6 (2017), 9–13
[9] L. A. Kurdachenko, J. Otal, A. A. Pypka, “Relationships between factors of canonical central series of Leibniz algebras”, European Journal of Mathematics, 2 (2016), 565–577
[10] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “From groups to Leibniz algebras: Common approaches, parallel results”, Advances in Group Theory and Applications, 5 (2018), 1–31
[11] L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, “On some properties of the upper central series in Leibniz algebras”, Comment. Math. Univ. Carolin., 60:2 (2019), 161–175
[12] L. A. Kurdachenko, A. A. Pypka, I.Ya. Subbotin, “On some relations between the factors of the upper and lower central series in Lie algebras”, Serdica Math. J., 41 (2015), 293–306