On the structure of Leibniz algebras whose subalgebras are ideals or core-free
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 180-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebra $L$ over a field $F$ is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: $[[a, b], c] = [a, [b, c]] - [b, [a, c]]$ for all $a, b, c \in L$. Leibniz algebras are generalizations of Lie algebras. A subalgebra $S$ of a Leibniz algebra $L$ is called a core-free, if $S$ does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.
Keywords: Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra.
@article{ADM_2020_29_2_a4,
     author = {V. A. {\CYRS}hupordia and L. A. Kurdachenko and N. N. Semko},
     title = {On the structure of {Leibniz} algebras whose subalgebras are ideals or core-free},
     journal = {Algebra and discrete mathematics},
     pages = {180--194},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/}
}
TY  - JOUR
AU  - V. A. Сhupordia
AU  - L. A. Kurdachenko
AU  - N. N. Semko
TI  - On the structure of Leibniz algebras whose subalgebras are ideals or core-free
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 180
EP  - 194
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/
LA  - en
ID  - ADM_2020_29_2_a4
ER  - 
%0 Journal Article
%A V. A. Сhupordia
%A L. A. Kurdachenko
%A N. N. Semko
%T On the structure of Leibniz algebras whose subalgebras are ideals or core-free
%J Algebra and discrete mathematics
%D 2020
%P 180-194
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/
%G en
%F ADM_2020_29_2_a4
V. A. Сhupordia; L. A. Kurdachenko; N. N. Semko. On the structure of Leibniz algebras whose subalgebras are ideals or core-free. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 180-194. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/

[1] A. M. Bloh, “On a generalization of the concept of Lie algebra”, Dokl. AN SSSR, 165 (1965), 471–473

[2] A. M. Bloh, “Cartan-Eilenberg homology theory for a generalized class of Lie algebras”, Dokl. AN SSSR, 175 (1967), 266–268

[3] A. M. Bloh, “A certain generalization of the concept of Lie algebra”, Moskov. Gos. Ped. Inst., Uch. Zap., 375 (1971), 9–20

[4] J.-L. Loday, “Une version non commutative des algebres de Lie; les algebras de Leibniz”, Enseign. Math., 39 (1993), 269–293

[5] J.-L. Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften, 301, 2nd ed., Springer, Berlin, 1998

[6] V. A. Chupordia, L. A. Kurdachenko, I.Ya. Subbotin, “On some “minimal” Leibniz algebras”, Journal of Algebra and its Application, 16:2 (2017)

[7] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “The Leibniz algebras whose subalgebras are ideals”, Open Math., 15 (2017), 92–100

[8] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “The Leibniz algebras whose subalgebras are ideals”, Dopov. Nac. Akad. Nauk. Ukr., 6 (2017), 9–13

[9] L. A. Kurdachenko, J. Otal, A. A. Pypka, “Relationships between factors of canonical central series of Leibniz algebras”, European Journal of Mathematics, 2 (2016), 565–577

[10] L. A. Kurdachenko, N. N. Semko, I.Ya. Subbotin, “From groups to Leibniz algebras: Common approaches, parallel results”, Advances in Group Theory and Applications, 5 (2018), 1–31

[11] L. A. Kurdachenko, J. Otal, I. Ya. Subbotin, “On some properties of the upper central series in Leibniz algebras”, Comment. Math. Univ. Carolin., 60:2 (2019), 161–175

[12] L. A. Kurdachenko, A. A. Pypka, I.Ya. Subbotin, “On some relations between the factors of the upper and lower central series in Lie algebras”, Serdica Math. J., 41 (2015), 293–306