Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_2_a4, author = {V. A. {\CYRS}hupordia and L. A. Kurdachenko and N. N. Semko}, title = {On the structure of {Leibniz} algebras whose subalgebras are ideals or core-free}, journal = {Algebra and discrete mathematics}, pages = {180--194}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/} }
TY - JOUR AU - V. A. Сhupordia AU - L. A. Kurdachenko AU - N. N. Semko TI - On the structure of Leibniz algebras whose subalgebras are ideals or core-free JO - Algebra and discrete mathematics PY - 2020 SP - 180 EP - 194 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/ LA - en ID - ADM_2020_29_2_a4 ER -
%0 Journal Article %A V. A. Сhupordia %A L. A. Kurdachenko %A N. N. Semko %T On the structure of Leibniz algebras whose subalgebras are ideals or core-free %J Algebra and discrete mathematics %D 2020 %P 180-194 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/ %G en %F ADM_2020_29_2_a4
V. A. Сhupordia; L. A. Kurdachenko; N. N. Semko. On the structure of Leibniz algebras whose subalgebras are ideals or core-free. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 180-194. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a4/