Morita equivalent unital locally matrix algebras
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 173-179

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe Morita equivalence of unital locally matrix algebras in terms of their Steinitz parametrization. Two countable-dimensional unital locally matrix algebras are Morita equivalent if and only if their Steinitz numbers are rationally connected. For an arbitrary uncountable dimension $\alpha$ and an arbitrary not locally finite Steinitz number $s$ there exist unital locally matrix algebras $A$, $B$ such that $\dim_{F}A=\dim_{F}B=\alpha$, $\mathbf{st}(A)=\mathbf{st}(B)=s$, however, the algebras $A$, $B$ are not Morita equivalent.
Keywords: locally matrix algebra, Steinitz number
Mots-clés : Morita equivalence.
@article{ADM_2020_29_2_a3,
     author = {O. Bezushchak and B. Oliynyk},
     title = {Morita equivalent unital locally matrix algebras},
     journal = {Algebra and discrete mathematics},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/}
}
TY  - JOUR
AU  - O. Bezushchak
AU  - B. Oliynyk
TI  - Morita equivalent unital locally matrix algebras
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 173
EP  - 179
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/
LA  - en
ID  - ADM_2020_29_2_a3
ER  - 
%0 Journal Article
%A O. Bezushchak
%A B. Oliynyk
%T Morita equivalent unital locally matrix algebras
%J Algebra and discrete mathematics
%D 2020
%P 173-179
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/
%G en
%F ADM_2020_29_2_a3
O. Bezushchak; B. Oliynyk. Morita equivalent unital locally matrix algebras. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/