Morita equivalent unital locally matrix algebras
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 173-179
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe Morita equivalence of unital locally matrix algebras in terms of their Steinitz parametrization. Two countable-dimensional unital locally matrix algebras are Morita equivalent if and only if their Steinitz numbers are rationally connected. For an arbitrary uncountable dimension $\alpha$ and an arbitrary not locally finite Steinitz number $s$ there exist unital locally matrix algebras $A$, $B$ such that $\dim_{F}A=\dim_{F}B=\alpha$, $\mathbf{st}(A)=\mathbf{st}(B)=s$, however, the algebras $A$, $B$ are not Morita equivalent.
Keywords:
locally matrix algebra, Steinitz number
Mots-clés : Morita equivalence.
Mots-clés : Morita equivalence.
@article{ADM_2020_29_2_a3,
author = {O. Bezushchak and B. Oliynyk},
title = {Morita equivalent unital locally matrix algebras},
journal = {Algebra and discrete mathematics},
pages = {173--179},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/}
}
O. Bezushchak; B. Oliynyk. Morita equivalent unital locally matrix algebras. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/