Morita equivalent unital locally matrix algebras
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 173-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe Morita equivalence of unital locally matrix algebras in terms of their Steinitz parametrization. Two countable-dimensional unital locally matrix algebras are Morita equivalent if and only if their Steinitz numbers are rationally connected. For an arbitrary uncountable dimension $\alpha$ and an arbitrary not locally finite Steinitz number $s$ there exist unital locally matrix algebras $A$, $B$ such that $\dim_{F}A=\dim_{F}B=\alpha$, $\mathbf{st}(A)=\mathbf{st}(B)=s$, however, the algebras $A$, $B$ are not Morita equivalent.
Keywords: locally matrix algebra, Steinitz number
Mots-clés : Morita equivalence.
@article{ADM_2020_29_2_a3,
     author = {O. Bezushchak and B. Oliynyk},
     title = {Morita equivalent unital locally matrix algebras},
     journal = {Algebra and discrete mathematics},
     pages = {173--179},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/}
}
TY  - JOUR
AU  - O. Bezushchak
AU  - B. Oliynyk
TI  - Morita equivalent unital locally matrix algebras
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 173
EP  - 179
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/
LA  - en
ID  - ADM_2020_29_2_a3
ER  - 
%0 Journal Article
%A O. Bezushchak
%A B. Oliynyk
%T Morita equivalent unital locally matrix algebras
%J Algebra and discrete mathematics
%D 2020
%P 173-179
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/
%G en
%F ADM_2020_29_2_a3
O. Bezushchak; B. Oliynyk. Morita equivalent unital locally matrix algebras. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 173-179. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a3/

[1] J. G. Glimm, “On a certain class of operator algebras”, Trans. Amer. Math. Soc., 95:2 (1960), 318–340

[2] A. A. Baranov, “Classification of the direct limits of involution simple associative algebras and the corresponding dimension groups”, J. Algebra, 381 (2013), 73–95

[3] A. A. Baranov, A. G. Zhilinskii, “Diagonal direct limits of simple Lie algebras”, Comm. Algebra, 27:6 (1999), 2749–2766

[4] O. Bezushchak, B. Oliynyk, V. Sushchansky, “Representation of Steinitz's lattice in lattices of substructures of relational structures”, Algebra Discrete Math., 21:2 (2016), 184–201

[5] E. Steinitz, “Algebraische Theorie der Körper”, J. Reine Angew. Math., 137 (1910), 167–309

[6] Oksana Bezushchak, Bogdana Oliynyk, “Unital locally matrix algebras and Steinitz numbers”, J. Algebra Appl., 2020 | DOI

[7] Oksana Bezushchak, Bogdana Oliynyk, “Primary decompositions of unital locally matrix algebras”, Bull. Math. Sci., 10:1 (2020), 2050006, 7 pp. | DOI

[8] A. I. Mal'cev, Algebraic Systems, Springer-Verlag, New York–Heidelberg, 1973

[9] Kiiti Morita, “Duality for modules and its applications to the theory of rings with minimum condition”, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A., 6:150 (1958), 83–142

[10] Yu. A. Drozd, V. V. Kirichenko, Finite Dimensional Algebras, Springer-Verlag, Berlin–Heidelberg–New York, 1994

[11] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189, Springer-Verlag, New York, 1999

[12] G. Köthe, “Schiefkörper unendlichen Ranges über dem Zentrum”, Math. Ann., 105 (1931), 15–39

[13] A. Kurosh, “Direct decompositions of simple rings”, Rec. Math. [Mat. Sbornik] N.S., 11(53):3 (1942), 245–264

[14] V. M. Kurochkin., “On the theory of locally simple and locally normal algebras”, Mat. Sb., Nov. Ser., 22(64):3 (1948), 443–454

[15] J. Dixmier, “On some $C^{*}$-algebras considered by Glimm”, J. Funct. Anal., 1 (1967), 182–203

[16] Adel Alahmadi, Hamed Alsulamia, Efim Zelmanov, On the Morita equivalence class of a finitely presented algebra, arXiv: 1806.00629

[17] Yuri Berest, George Wilson, “Automorphisms and ideals of the Weyl algebra”, Math. Ann., 318:1 (2000), 127–147

[18] Xiaojun Chen, Alimjon Eshmatov, Farkhod Eshmatov, Vyacheslav Futorny, Automorphisms and Ideals of Noncommutative Deformations of $\mathbb{C}^2/\mathbb{Z}_2$, arXiv: 1606.05424