Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 161-172.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring with identity. A proper submodule $N$ of an $R$-module $M$ is said to be a $2$-absorbing submodule of $M$ if whenever $abm \in N$ for some $a, b \in R$ and $m \in M$, then $am \in N$ or $bm \in N$ or $ab \in (N :_R M)$. In [3], the authors introduced two dual notion of $2$-absorbing submodules (that is, $2$-absorbing and strongly $2$-absorbing second submodules) of $M$ and investigated some properties of these classes of modules. In this paper, we will introduce the concepts of generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules of modules over a commutative ring and obtain some related results.
Keywords: second, generalized $2$-absorbing second.
@article{ADM_2020_29_2_a2,
     author = {H. Ansari-Toroghy and F. Farshadifar and S. Maleki-Roudposhti},
     title = {Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules},
     journal = {Algebra and discrete mathematics},
     pages = {161--172},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/}
}
TY  - JOUR
AU  - H. Ansari-Toroghy
AU  - F. Farshadifar
AU  - S. Maleki-Roudposhti
TI  - Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 161
EP  - 172
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/
LA  - en
ID  - ADM_2020_29_2_a2
ER  - 
%0 Journal Article
%A H. Ansari-Toroghy
%A F. Farshadifar
%A S. Maleki-Roudposhti
%T Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules
%J Algebra and discrete mathematics
%D 2020
%P 161-172
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/
%G en
%F ADM_2020_29_2_a2
H. Ansari-Toroghy; F. Farshadifar; S. Maleki-Roudposhti. Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 161-172. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/

[1] H. Ansari-Toroghy and F. Farshadifar, “Fully idempotent and coidempotent modules”, Bull. Iranian Math., Soc., 38:4 (2012), 987–1005

[2] H. Ansari-Toroghy and F. Farshadifar, “On the dual notion of prime submodules”, Algebra Colloq., 19:Spec 1 (2012), 1109–1116

[3] H. Ansari-Toroghy and F. Farshadifar, “Some generalizations of second submodules”, Palestin J. Math., 8:2 (2019), 159–168

[4] H. Ansari-Toroghy and F. Farshadifar, “2-absorbing and strongly 2-absorbing secondary submodules of modules”, Le Matematiche, 72:11 (2017), 123–135

[5] H. Ansari-Toroghy and F. Farshadifar, “The dual notion of multiplication modules”, Taiwanese J. Math., 11:4 (2007), 1189–1201

[6] H. Ansari-Toroghy and F. Farshadifar, “On the dual notion of prime radicals of submodules”, Asian Eur. J. Math., 6:2 (2013), 1350024, 11 pp.

[7] H. Ansari-Toroghy, F. Farshadifar, and S. S. Pourmortazavi, “On the $P$-interiors of submodules of Artinian modules”, Hacet. J. Math. Stat., 45:3 (2016), 675–682

[8] H. Ansari-Toroghy, F. Farshadifar, S. S. Pourmortazavi, and F. Khaliphe, “On secondary modules”, Int. J. Algebra, 6:16 (2012), 769–774

[9] A. Badawi, “On 2-absorbing ideals of commutative rings”, Bull. Austral. Math. Soc., 75 (2007), 417–429

[10] A. Badawi, U. Tekir, and E. Yetkin, “On 2-absorbing primary ideals in commutative rings”, Bull. Korean Math. Soc., 51:4 (2014), 1163–1173

[11] M. Baig, Primary Decomposition and Secondary Representation of Modules over a Commutative Ring, Thesis, Georgia State University, 2009

[12] S. Ceken, M. Alkan, P. F. Smith, “The dual notion of the prime radical of a module”, J. Algebra, 392 (2013), 265–275

[13] A. Y. Darani and F. Soheilnia, “2-absorbing and weakly 2-absorbing submoduels”, Thai J. Math., 9:3 (2011), 577–584

[14] J. Dauns, “Prime submodules”, J. Reine Angew. Math., 298 (1978), 156–181

[15] L. Fuchs, W. Heinzer, and B. Olberding, “Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed”, Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, 2006, 121–145

[16] Sh. Payrovi and S. Babaei, “On 2-absorbing submodules”, Algebra Collq., 19 (2012), 913–920

[17] S. Yassemi, “The dual notion of prime submodules”, Arch. Math. (Brno), 37 (2001), 273–278

[18] S. Yassemi, “The dual notion of the cyclic modules”, Kobe. J. Math., 15 (1998), 41–46