Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_2_a2, author = {H. Ansari-Toroghy and F. Farshadifar and S. Maleki-Roudposhti}, title = {Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules}, journal = {Algebra and discrete mathematics}, pages = {161--172}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/} }
TY - JOUR AU - H. Ansari-Toroghy AU - F. Farshadifar AU - S. Maleki-Roudposhti TI - Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules JO - Algebra and discrete mathematics PY - 2020 SP - 161 EP - 172 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/ LA - en ID - ADM_2020_29_2_a2 ER -
%0 Journal Article %A H. Ansari-Toroghy %A F. Farshadifar %A S. Maleki-Roudposhti %T Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules %J Algebra and discrete mathematics %D 2020 %P 161-172 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/ %G en %F ADM_2020_29_2_a2
H. Ansari-Toroghy; F. Farshadifar; S. Maleki-Roudposhti. Generalized $2$-absorbing and strongly generalized $2$-absorbing second submodules. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 161-172. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a2/
[1] H. Ansari-Toroghy and F. Farshadifar, “Fully idempotent and coidempotent modules”, Bull. Iranian Math., Soc., 38:4 (2012), 987–1005
[2] H. Ansari-Toroghy and F. Farshadifar, “On the dual notion of prime submodules”, Algebra Colloq., 19:Spec 1 (2012), 1109–1116
[3] H. Ansari-Toroghy and F. Farshadifar, “Some generalizations of second submodules”, Palestin J. Math., 8:2 (2019), 159–168
[4] H. Ansari-Toroghy and F. Farshadifar, “2-absorbing and strongly 2-absorbing secondary submodules of modules”, Le Matematiche, 72:11 (2017), 123–135
[5] H. Ansari-Toroghy and F. Farshadifar, “The dual notion of multiplication modules”, Taiwanese J. Math., 11:4 (2007), 1189–1201
[6] H. Ansari-Toroghy and F. Farshadifar, “On the dual notion of prime radicals of submodules”, Asian Eur. J. Math., 6:2 (2013), 1350024, 11 pp.
[7] H. Ansari-Toroghy, F. Farshadifar, and S. S. Pourmortazavi, “On the $P$-interiors of submodules of Artinian modules”, Hacet. J. Math. Stat., 45:3 (2016), 675–682
[8] H. Ansari-Toroghy, F. Farshadifar, S. S. Pourmortazavi, and F. Khaliphe, “On secondary modules”, Int. J. Algebra, 6:16 (2012), 769–774
[9] A. Badawi, “On 2-absorbing ideals of commutative rings”, Bull. Austral. Math. Soc., 75 (2007), 417–429
[10] A. Badawi, U. Tekir, and E. Yetkin, “On 2-absorbing primary ideals in commutative rings”, Bull. Korean Math. Soc., 51:4 (2014), 1163–1173
[11] M. Baig, Primary Decomposition and Secondary Representation of Modules over a Commutative Ring, Thesis, Georgia State University, 2009
[12] S. Ceken, M. Alkan, P. F. Smith, “The dual notion of the prime radical of a module”, J. Algebra, 392 (2013), 265–275
[13] A. Y. Darani and F. Soheilnia, “2-absorbing and weakly 2-absorbing submoduels”, Thai J. Math., 9:3 (2011), 577–584
[14] J. Dauns, “Prime submodules”, J. Reine Angew. Math., 298 (1978), 156–181
[15] L. Fuchs, W. Heinzer, and B. Olberding, “Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed”, Abelian Groups, Rings, Modules, and Homological Algebra, Lect. Notes Pure Appl. Math., 249, 2006, 121–145
[16] Sh. Payrovi and S. Babaei, “On 2-absorbing submodules”, Algebra Collq., 19 (2012), 913–920
[17] S. Yassemi, “The dual notion of prime submodules”, Arch. Math. (Brno), 37 (2001), 273–278
[18] S. Yassemi, “The dual notion of the cyclic modules”, Kobe. J. Math., 15 (1998), 41–46