Computing bounds for the general sum-connectivity index of some graph operations
Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 147-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Denote by $d_{G}(u)$ the degree of a vertex $u\in V(G)$. The general sum-connectivity index of $G$ is defined as $\chi_{\alpha}(G)=\sum_{u_{1}u_2\in E(G)}(d_{G}(u_1)+d_{G}(u_2))^{\alpha}$, where $\alpha$ is a real number. In this paper, we compute the bounds for general sum-connectivity index of several graph operations. These operations include corona product, cartesian product, strong product, composition, join, disjunction and symmetric difference of graphs. We apply the obtained results to find the bounds for the general sum-connectivity index of some graphs of general interest.
Keywords: general sum-connectivity index, corona product, strong product, symmetric difference.
Mots-clés : Randić index
@article{ADM_2020_29_2_a1,
     author = {Sh. Akhter and R. Farooq},
     title = {Computing bounds for the general sum-connectivity index of some graph operations},
     journal = {Algebra and discrete mathematics},
     pages = {147--160},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/}
}
TY  - JOUR
AU  - Sh. Akhter
AU  - R. Farooq
TI  - Computing bounds for the general sum-connectivity index of some graph operations
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 147
EP  - 160
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/
LA  - en
ID  - ADM_2020_29_2_a1
ER  - 
%0 Journal Article
%A Sh. Akhter
%A R. Farooq
%T Computing bounds for the general sum-connectivity index of some graph operations
%J Algebra and discrete mathematics
%D 2020
%P 147-160
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/
%G en
%F ADM_2020_29_2_a1
Sh. Akhter; R. Farooq. Computing bounds for the general sum-connectivity index of some graph operations. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 147-160. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/

[1] S. Akhter, R. Farooq, S. Pirzada, “Exact formulae of general sum-connectivity index for some graph operations”, Matematički Vesnik, 70:3 (2018), 267–282 | MR

[2] A. R. Ashrafi, T. Doslic and A. Hamzeh, “The Zagreb coindices of graph operations”, Discrete Appl. Math., 158 (2010), 1571–1578 | DOI | MR | Zbl

[3] M. Azari, “Sharp lower bounds on the Narumi-Katayama index of graph operations”, Appl. Math. Comput., 239 (2014), 409–421 | MR | Zbl

[4] M. Azari, A. Iranmanesh, “Computing the eccentric-distance sum for graph operations”, Discrete. Appl. Math., 161:18 (2013), 2827–2840 | DOI | MR | Zbl

[5] M. Azari and A. Iranmanesh, “Some inequalities for the multiplicative sum Zagreb index of graph operations”, J. Math. Inequal., 9:3 (2015), 727–738 | DOI | MR | Zbl

[6] N. De, S. M. A. Nayeem, A. Pal, “$F$-index of some graph operations”, Discrete Mathematics, Algorithms and Applications, 8:2 (2016), 1650025 | DOI | MR | Zbl

[7] M. Eliasi, G. Raeisi, B. Taeri, “Wiener index of some graph operations”, Discrete Appl. Math., 160 (2012), 1333–1344 | DOI | MR | Zbl

[8] B. Eskender and E. Vumar, “Eccentric connectivity index and eccentric distance sum of some graph operations”, Trans. Comb., 2:1 (2013), 103–111 | MR | Zbl

[9] W. Gao, M. K. Jamil, M. R. Farahani, “The hyper-Zagreb index and some graph operations”, J. Appl. Math. Comput., 54:1 (2017), 263–275 | DOI | MR | Zbl

[10] M. H. Khalifeh, A. R. Ashrafi, H. Y. Azari, “The first and second Zagreb indices of some graphs operations”, Discrete Appl. Math., 157 (2009), 804–811 | DOI | MR | Zbl

[11] M. H. Khalifeh, H. Y. Azari, A. R. Ashrafi, “The hyper-Wiener index of graph operations”, Comput. Math. Appl., 56 (2008), 1402–1407 | DOI | MR | Zbl

[12] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Acad. Press, 1976

[13] X. Li, I. Gutman, Mathematical aspects of Randić type molecular structure descriptors, Univ. Kragujevac, Kragujevac, 2006 | MR

[14] M. Randić, “On characterization of molecular branching”, J. Am. Chem. Soc., 97 (1975), 6609–6615 | DOI

[15] B. S. Shetty, V. Lokesha, P. S. Ranjini, “On the harmonic index of graph operations”, Transactions on Combinatorics, 4:4 (2015), 5–14 | MR | Zbl

[16] M. Veylaki, M. J. Nikmehr and H. A. Tavallaee, “The third and hyper-Zagreb coindices of some graph operations”, J. Appl. Math. Comput., 50:1 (2016), 315–325 | DOI | MR | Zbl

[17] D. Wang, S. Tan, L. Zhu, “On the lower and upper bounds for different indices of tricyclic graphs”, J. Appl. Math. Comput., 51 (2016), 1–11 | DOI | MR

[18] H. Wiener, “Structural determination of the paraffin boiling points”, J. Am. Chem. Soc., 69 (1947), 17–20 | DOI

[19] B. Zhou, N. Trinajstić, “On a novel connectivity index”, J. Math. Chem., 46 (2009), 1252–1270 | DOI | MR | Zbl

[20] B. Zhou, N. Trinajstić, “On general sum-connectivity index”, J. Math. Chem., 47 (2010), 210–218 | DOI | MR | Zbl