Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_2_a1, author = {Sh. Akhter and R. Farooq}, title = {Computing bounds for the general sum-connectivity index of some graph operations}, journal = {Algebra and discrete mathematics}, pages = {147--160}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/} }
TY - JOUR AU - Sh. Akhter AU - R. Farooq TI - Computing bounds for the general sum-connectivity index of some graph operations JO - Algebra and discrete mathematics PY - 2020 SP - 147 EP - 160 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/ LA - en ID - ADM_2020_29_2_a1 ER -
Sh. Akhter; R. Farooq. Computing bounds for the general sum-connectivity index of some graph operations. Algebra and discrete mathematics, Tome 29 (2020) no. 2, pp. 147-160. http://geodesic.mathdoc.fr/item/ADM_2020_29_2_a1/
[1] S. Akhter, R. Farooq, S. Pirzada, “Exact formulae of general sum-connectivity index for some graph operations”, Matematički Vesnik, 70:3 (2018), 267–282 | MR
[2] A. R. Ashrafi, T. Doslic and A. Hamzeh, “The Zagreb coindices of graph operations”, Discrete Appl. Math., 158 (2010), 1571–1578 | DOI | MR | Zbl
[3] M. Azari, “Sharp lower bounds on the Narumi-Katayama index of graph operations”, Appl. Math. Comput., 239 (2014), 409–421 | MR | Zbl
[4] M. Azari, A. Iranmanesh, “Computing the eccentric-distance sum for graph operations”, Discrete. Appl. Math., 161:18 (2013), 2827–2840 | DOI | MR | Zbl
[5] M. Azari and A. Iranmanesh, “Some inequalities for the multiplicative sum Zagreb index of graph operations”, J. Math. Inequal., 9:3 (2015), 727–738 | DOI | MR | Zbl
[6] N. De, S. M. A. Nayeem, A. Pal, “$F$-index of some graph operations”, Discrete Mathematics, Algorithms and Applications, 8:2 (2016), 1650025 | DOI | MR | Zbl
[7] M. Eliasi, G. Raeisi, B. Taeri, “Wiener index of some graph operations”, Discrete Appl. Math., 160 (2012), 1333–1344 | DOI | MR | Zbl
[8] B. Eskender and E. Vumar, “Eccentric connectivity index and eccentric distance sum of some graph operations”, Trans. Comb., 2:1 (2013), 103–111 | MR | Zbl
[9] W. Gao, M. K. Jamil, M. R. Farahani, “The hyper-Zagreb index and some graph operations”, J. Appl. Math. Comput., 54:1 (2017), 263–275 | DOI | MR | Zbl
[10] M. H. Khalifeh, A. R. Ashrafi, H. Y. Azari, “The first and second Zagreb indices of some graphs operations”, Discrete Appl. Math., 157 (2009), 804–811 | DOI | MR | Zbl
[11] M. H. Khalifeh, H. Y. Azari, A. R. Ashrafi, “The hyper-Wiener index of graph operations”, Comput. Math. Appl., 56 (2008), 1402–1407 | DOI | MR | Zbl
[12] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Acad. Press, 1976
[13] X. Li, I. Gutman, Mathematical aspects of Randić type molecular structure descriptors, Univ. Kragujevac, Kragujevac, 2006 | MR
[14] M. Randić, “On characterization of molecular branching”, J. Am. Chem. Soc., 97 (1975), 6609–6615 | DOI
[15] B. S. Shetty, V. Lokesha, P. S. Ranjini, “On the harmonic index of graph operations”, Transactions on Combinatorics, 4:4 (2015), 5–14 | MR | Zbl
[16] M. Veylaki, M. J. Nikmehr and H. A. Tavallaee, “The third and hyper-Zagreb coindices of some graph operations”, J. Appl. Math. Comput., 50:1 (2016), 315–325 | DOI | MR | Zbl
[17] D. Wang, S. Tan, L. Zhu, “On the lower and upper bounds for different indices of tricyclic graphs”, J. Appl. Math. Comput., 51 (2016), 1–11 | DOI | MR
[18] H. Wiener, “Structural determination of the paraffin boiling points”, J. Am. Chem. Soc., 69 (1947), 17–20 | DOI
[19] B. Zhou, N. Trinajstić, “On a novel connectivity index”, J. Math. Chem., 46 (2009), 1252–1270 | DOI | MR | Zbl
[20] B. Zhou, N. Trinajstić, “On general sum-connectivity index”, J. Math. Chem., 47 (2010), 210–218 | DOI | MR | Zbl