On the non-periodic groups, whose subgroups of~infinite special rank are transitively normal
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper devoted to the non-periodic locally generalized radical groups, whose subgroups of infinite special rank are transitively normal. We proved that if such a group $G$ includes an ascendant locally nilpotent subgroup of infinite special rank, then $G$ is abelian.
Keywords: finite special rank, periodic group, locally nilpotent radical, locally nilpotent residual, transitively normal subgroups.
Mots-clés : soluble group
@article{ADM_2020_29_1_a6,
     author = {L. A. Kurdachenko and I. Ya. Subbotin and T. V. Velychko},
     title = {On the non-periodic groups, whose subgroups of~infinite special rank are transitively normal},
     journal = {Algebra and discrete mathematics},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a6/}
}
TY  - JOUR
AU  - L. A. Kurdachenko
AU  - I. Ya. Subbotin
AU  - T. V. Velychko
TI  - On the non-periodic groups, whose subgroups of~infinite special rank are transitively normal
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 74
EP  - 84
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a6/
LA  - en
ID  - ADM_2020_29_1_a6
ER  - 
%0 Journal Article
%A L. A. Kurdachenko
%A I. Ya. Subbotin
%A T. V. Velychko
%T On the non-periodic groups, whose subgroups of~infinite special rank are transitively normal
%J Algebra and discrete mathematics
%D 2020
%P 74-84
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a6/
%G en
%F ADM_2020_29_1_a6
L. A. Kurdachenko; I. Ya. Subbotin; T. V. Velychko. On the non-periodic groups, whose subgroups of~infinite special rank are transitively normal. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a6/

[1] Kurdachenko L. A., Subbotin I. Ya., “Transitivity of normality and pronormal subgroups”, Combinatorial group Theory, discrete groups, and number theory, Contemporary Mathematics, 421, 2006, 201–212 | DOI | MR | Zbl

[2] Maltsev A. I., “On groups of finite rank”, Mat. Sb., 22 (1948), 351–352 | MR | Zbl

[3] Dixon M. R., Kurdachenko L. A., Subbotin I. Ya., “On various rank conditions in infinite groups”, Algebra Discrete Math., 4 (2007), 23–44 | MR

[4] Dixon M. R., “Certain rank conditions on groups”, Noti di Matematica, 2 (2008), 151–175 | MR

[5] Dixon M. R.,Kurdachenko L. A., Pypka A. A., Subbotin I. Ya., “Groups satisfying certain rank conditions”, Algebra Discrete Math., 4 (2016), 23–44 | MR

[6] Dixon M. R., Kurdachenko L. A., Subbotin I. Ya., Rank of groups: the tools, characteristic and restrictions, Wiley, 2017 | MR

[7] Dixon M. R., Evans M. J., Smith H., “Locally (soluble-by-finite) groups with all proper insoluble subgroups of finite rank”, Arch. Math., 68 (1997), 100–109 | DOI | MR | Zbl

[8] Semko N. N., Velychko T. V., “On the groups whose subgroups of infinite special rank are transitively normal”, Algebra and discrete Math., 1 (2017), 34–45 | MR | Zbl

[9] Ba M. S., Borevich Z. I., “On arrangement of intermediate subgroups”, Rings and Linear Groups, Kubanskij Univ., Krasnodar, 1988, 14–41 | MR

[10] Muller K. H., “Schwachnormale Untergruppen: Eine gemeinsame Verallgemeinerung der normalen und normalisatorgleichen Untergruppen.”, Rend. Semin. Mat. Univ. Padova, 36 (1966), 129–157 | MR | Zbl

[11] Robinson D. J. S., “A note on finite groups in which normality is transitive”, Proc. Amer. Math. Soc., 4 (1968), 933–937 | DOI | MR

[12] Robinson D. J. S., “Groups in which normality is a transitive relation”, Proc. Cambridge Phil. Soc., 60 (1964), 21–38 | DOI | MR | Zbl

[13] Baer R., “Situation der Untergruppen und Struktur der Gruppe”, S.-B. Heidelberg Akad., 2, 1933, 12–17

[14] Glushkov V. M., “On some problems of theory of torsion - free nilpotent and locally nilpotent groups”, Mat. Sb., 1 (1952), 79–104 | MR

[15] Fuchs L., Infinite abelian groups, Academic Press, New York, 1970 | MR | Zbl

[16] Plotkin B. I., “Radical groups.”, Mat. Sb., 3 (1966), 507–526 | MR