Finite groups with semi-subnormal Schmidt subgroups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 66-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup $A$ of a group $G$ is semi-normal in $G$ if there exists a subgroup $B$ of $G$ such that $G=AB$ and $AB_1$ is a proper subgroup of $G$ for every proper subgroup $B_1$ of $B$. If $A$ is either subnormal in $G$ or is semi-normal in $G$, then $A$ is called a semi-subnormal subgroup of $G$. In this paper, we establish that a group $G$ with semi-subnormal Schmidt $\{2,3\}$-subgroups is $3$-soluble. Moreover, if all 5-closed Schmidt $\{2,5\}$-subgroups are semi-subnormal in $G$, then $G$ is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent.
Keywords: finite soluble group, Schmidt subgroup, semi-normal subgroup, subnormal subgroup.
@article{ADM_2020_29_1_a5,
     author = {V. N. Knyagina and V. S. Monakhov},
     title = {Finite groups with semi-subnormal {Schmidt} subgroups},
     journal = {Algebra and discrete mathematics},
     pages = {66--73},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a5/}
}
TY  - JOUR
AU  - V. N. Knyagina
AU  - V. S. Monakhov
TI  - Finite groups with semi-subnormal Schmidt subgroups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 66
EP  - 73
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a5/
LA  - en
ID  - ADM_2020_29_1_a5
ER  - 
%0 Journal Article
%A V. N. Knyagina
%A V. S. Monakhov
%T Finite groups with semi-subnormal Schmidt subgroups
%J Algebra and discrete mathematics
%D 2020
%P 66-73
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a5/
%G en
%F ADM_2020_29_1_a5
V. N. Knyagina; V. S. Monakhov. Finite groups with semi-subnormal Schmidt subgroups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 66-73. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a5/

[1] O. Y. Schmidt, “Groups whose all subgroups are special”, Mat. Sb., 31 (1924), 366–372 (Russian)

[2] N. F. Kuzennyi, S. S. Levishchenko, “Finite Shmidt's groups and their generalizations”, Ukrainian Math. J., 43:7–8 (1991), 898–904 | MR

[3] V. S. Monakhov, “The Schmidt groups, its existence and some applications”, Tr. Ukrain. Math. Congr.–2001, v. 1, Kiev, 2002, 81–90 (Russian) | MR | Zbl

[4] V. N. Kniahina, V. S. Monakhov, “On finite groups with some subnormal Schmidt subgroups”, Sib. Math. J., 45:6 (2004), 1075–1079 | DOI | MR

[5] V. A. Vedernikov, “Finite groups with subnormal Schmidt subgroups”, Algebra and Logic, 46:6 (2007), 363–372 | DOI | MR | Zbl

[6] V. N. Kniahina, V. S. Monakhov, “Finite groups with Hall Schmidt subgroups”, Publ. Math. Debrecen, 81:3–4 (2012), 341–350 | DOI | MR | Zbl

[7] V. V. Podgornaya, “Semi-normal subgroups and supersolubility of finite groups”, Vesti Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. navuk, 4 (2000), 22–25 (Russian) | MR

[8] V. S. Monakhov, “Finite groups with a seminormal Hall subgroup”, Math. Notes., 80:4 (2006), 542–549 | DOI | MR | Zbl

[9] W. Guo, “Finite groups with seminormal Sylow subgroups”, Acta Math. Sinica., 24:10 (2008), 1751–1758 | DOI | MR

[10] V. N. Kniahina, V. S. Monakhov, “Finite groups with semi-normal Schmidt subgroups”, Algebra and Logic, 46:4 (2007), 244–249 | DOI | MR

[11] V. S. Monakhov, Introduction to the Theory of Finite groups and their Classes, Vyshejshaja shkola, 2006 (Russian)

[12] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978 (Russian) | MR | Zbl

[13] V. S. Monakhov, “Finite groups with abnormal and $\mathfrak{U}$-subnormal subgroups”, Sib. Math. J., 57:2 (2016), 353–363 | DOI | MR

[14] B. Huppert, Endliche Gruppen I, Springer, 1967 | MR

[15] V. S. Monakhov, “Product of a biprimary and a 2-decomposable groups”, Math. Notes, 23:5 (1978), 355–359 | DOI | MR | Zbl

[16] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Clarendon, London, 1985 | MR | Zbl

[17] V. S. Monakhov, “Indices of maximal subgroups of finite soluble groups”, Algebra and Logic, 43:4 (2004), 230–237 | DOI | MR | Zbl