Leibniz algebras with absolute maximal Lie subalgebras
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 52-65

Voir la notice de l'article provenant de la source Math-Net.Ru

A Lie subalgebra of a given Leibniz algebra is said to be an absolute maximal Lie subalgebra if it has codimension one. In this paper, we study some properties of non-Lie Leibniz algebras containing absolute maximal Lie subalgebras. When the dimension and codimension of their $\mathsf{Lie}$-center are greater than two, we refer to these Leibniz algebras as $s$-Leibniz algebras (strong Leibniz algebras). We provide a classification of nilpotent Leibniz $s$-algebras of dimension up to five.
Keywords: Leibniz algebras, $s$-Leibniz algebras, $\mathsf{Lie}$-center.
@article{ADM_2020_29_1_a4,
     author = {G. R. Biyogmam and C. Tcheka},
     title = {Leibniz algebras with absolute maximal {Lie} subalgebras},
     journal = {Algebra and discrete mathematics},
     pages = {52--65},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a4/}
}
TY  - JOUR
AU  - G. R. Biyogmam
AU  - C. Tcheka
TI  - Leibniz algebras with absolute maximal Lie subalgebras
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 52
EP  - 65
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a4/
LA  - en
ID  - ADM_2020_29_1_a4
ER  - 
%0 Journal Article
%A G. R. Biyogmam
%A C. Tcheka
%T Leibniz algebras with absolute maximal Lie subalgebras
%J Algebra and discrete mathematics
%D 2020
%P 52-65
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a4/
%G en
%F ADM_2020_29_1_a4
G. R. Biyogmam; C. Tcheka. Leibniz algebras with absolute maximal Lie subalgebras. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 52-65. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a4/