A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 33-41

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma =\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $G$ a finite group. $G$ is said to be $\sigma$-soluble if every chief factor $H/K$ of $G$ is a $\sigma_{i}$-group for some $i=i(H/K)$. A set ${\mathcal H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every member $\ne 1$ of ${\mathcal H}$ is a Hall $\sigma_{i}$-subgroup of $G$ for some $\sigma_{i}\in \sigma $ and ${\mathcal H}$ contains exactly one Hall $\sigma_{i}$-subgroup of $G$ for every $i$ such that $\sigma_{i}\cap \pi (G)\ne \varnothing$. A subgroup $A$ of $G$ is said to be ${\sigma}$-quasinormal or ${\sigma}$-permutable in $G$ if $G$ has a complete Hall $\sigma$-set $\mathcal H$ such that $AH^{x}=H^{x}A$ for all $x\in G$ and all $H\in \mathcal H$. We obtain a new characterization of finite $\sigma$-soluble groups $G$ in which $\sigma$-permutability is a transitive relation in $G$.
Keywords: finite group, $\sigma$-permutable subgroup, $\sigma$-nilpotent group.
Mots-clés : $P\sigma T$-group, $\sigma$-soluble group
@article{ADM_2020_29_1_a2,
     author = {N. M. Adarchenko},
     title = {A new characterization of finite $\sigma$-soluble $P\sigma T$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/}
}
TY  - JOUR
AU  - N. M. Adarchenko
TI  - A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 33
EP  - 41
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/
LA  - en
ID  - ADM_2020_29_1_a2
ER  - 
%0 Journal Article
%A N. M. Adarchenko
%T A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
%J Algebra and discrete mathematics
%D 2020
%P 33-41
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/
%G en
%F ADM_2020_29_1_a2
N. M. Adarchenko. A new characterization of finite $\sigma$-soluble $P\sigma T$-groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/