A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma =\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$ and $G$ a finite group. $G$ is said to be $\sigma$-soluble if every chief factor $H/K$ of $G$ is a $\sigma_{i}$-group for some $i=i(H/K)$. A set ${\mathcal H}$ of subgroups of $G$ is said to be a complete Hall $\sigma $-set of $G$ if every member $\ne 1$ of ${\mathcal H}$ is a Hall $\sigma_{i}$-subgroup of $G$ for some $\sigma_{i}\in \sigma $ and ${\mathcal H}$ contains exactly one Hall $\sigma_{i}$-subgroup of $G$ for every $i$ such that $\sigma_{i}\cap \pi (G)\ne \varnothing$. A subgroup $A$ of $G$ is said to be ${\sigma}$-quasinormal or ${\sigma}$-permutable in $G$ if $G$ has a complete Hall $\sigma$-set $\mathcal H$ such that $AH^{x}=H^{x}A$ for all $x\in G$ and all $H\in \mathcal H$. We obtain a new characterization of finite $\sigma$-soluble groups $G$ in which $\sigma$-permutability is a transitive relation in $G$.
Keywords: finite group, $\sigma$-permutable subgroup, $\sigma$-nilpotent group.
Mots-clés : $P\sigma T$-group, $\sigma$-soluble group
@article{ADM_2020_29_1_a2,
     author = {N. M. Adarchenko},
     title = {A new characterization of finite $\sigma$-soluble $P\sigma T$-groups},
     journal = {Algebra and discrete mathematics},
     pages = {33--41},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/}
}
TY  - JOUR
AU  - N. M. Adarchenko
TI  - A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 33
EP  - 41
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/
LA  - en
ID  - ADM_2020_29_1_a2
ER  - 
%0 Journal Article
%A N. M. Adarchenko
%T A new characterization of finite $\sigma$-soluble $P\sigma T$-groups
%J Algebra and discrete mathematics
%D 2020
%P 33-41
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/
%G en
%F ADM_2020_29_1_a2
N. M. Adarchenko. A new characterization of finite $\sigma$-soluble $P\sigma T$-groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/

[1] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978 | MR | Zbl

[3] A. N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl

[4] W. Guo, A. N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl

[5] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Application, 15:4 (2015), 21–36 | MR

[6] J. C. Beidleman, A. N. Skiba, “On $\tau_{\sigma}$-quasinormal subgroups of finite groups”, J. Group Theory, 20:5 (2017), 955–964 | DOI | MR

[7] B. Hu, J. Huang, A. N. Skiba, “Finite groups with given systems of $\sigma$-semipermutable subgroups”, J. Algebra and its Application, 17:2 (2018), 1850031, 13 pp. | DOI | MR | Zbl

[8] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR

[9] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg–New York–Dordrecht–London, 2015 | MR | Zbl

[10] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | DOI | MR | Zbl

[11] V. O. Lukyanenko, A. N. Skiba, “Finite groups in which $\tau$-quasinormality is a transitive relation”, Rend. Sem. Mat. Univ. Padova, 124 (2010), 1–15 | DOI | MR

[12] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, J. Belarusian State Univ. Math. Informatics, 3 (2019), 35–47 | DOI | MR | Zbl

[13] Z. Chi, A. N. Skiba, “On a lattice characterization of finite soluble $PST$-groups”, Bull. Austral. Math. Soc., 2019 | DOI | MR

[14] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, in Press | DOI | MR

[15] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[16] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006 | MR | Zbl

[17] B. N. Knyagina, V. S. Monakhov, “On $\pi'$-properties of finite groups having a Hall $\pi$-subgroup”, Siberian Math. J., 522 (2011), 398–309 | MR

[18] N. M. Adarchenko, On $\tau_{\sigma}$-permutable subgroups of finite groups, Preprint, 2019 | MR