Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_1_a2, author = {N. M. Adarchenko}, title = {A new characterization of finite $\sigma$-soluble $P\sigma T$-groups}, journal = {Algebra and discrete mathematics}, pages = {33--41}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/} }
N. M. Adarchenko. A new characterization of finite $\sigma$-soluble $P\sigma T$-groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 33-41. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a2/
[1] A. N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl
[2] L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow, 1978 | MR | Zbl
[3] A. N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl
[4] W. Guo, A. N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl
[5] A. N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Application, 15:4 (2015), 21–36 | MR
[6] J. C. Beidleman, A. N. Skiba, “On $\tau_{\sigma}$-quasinormal subgroups of finite groups”, J. Group Theory, 20:5 (2017), 955–964 | DOI | MR
[7] B. Hu, J. Huang, A. N. Skiba, “Finite groups with given systems of $\sigma$-semipermutable subgroups”, J. Algebra and its Application, 17:2 (2018), 1850031, 13 pp. | DOI | MR | Zbl
[8] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR
[9] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg–New York–Dordrecht–London, 2015 | MR | Zbl
[10] V. O. Lukyanenko, A. N. Skiba, “On weakly $\tau$-quasinormal subgroups of finite groups”, Acta Math. Hungar., 125:3 (2009), 237–248 | DOI | MR | Zbl
[11] V. O. Lukyanenko, A. N. Skiba, “Finite groups in which $\tau$-quasinormality is a transitive relation”, Rend. Sem. Mat. Univ. Padova, 124 (2010), 1–15 | DOI | MR
[12] A. N. Skiba, “On some classes of sublattices of the subgroup lattice”, J. Belarusian State Univ. Math. Informatics, 3 (2019), 35–47 | DOI | MR | Zbl
[13] Z. Chi, A. N. Skiba, “On a lattice characterization of finite soluble $PST$-groups”, Bull. Austral. Math. Soc., 2019 | DOI | MR
[14] A. N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, in Press | DOI | MR
[15] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[16] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer-Verlag, Dordrecht, 2006 | MR | Zbl
[17] B. N. Knyagina, V. S. Monakhov, “On $\pi'$-properties of finite groups having a Hall $\pi$-subgroup”, Siberian Math. J., 522 (2011), 398–309 | MR
[18] N. M. Adarchenko, On $\tau_{\sigma}$-permutable subgroups of finite groups, Preprint, 2019 | MR