Sets of prime power order generators of finite groups
Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 129-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $X$ of prime power order elements of a finite group $G$ is called $\mathrm{pp}$-independent if there is no proper subset $Y$ of $X$ such that $\langle Y,\Phi(G) \rangle = \langle X,\Phi(G) \rangle$, where $\Phi(G)$ is the Frattini subgroup of $G$. A group $G$ has property $\mathcal{B}_{pp}$ if all $\mathrm{pp}$-independent generating sets of $G$ have the same size. $G$ has the $\mathrm{pp}$-basis exchange property if for any $\mathrm{pp}$-independent generating sets $B_1, B_2$ of $G$ and $x\in B_1$ there exists $y\in B_2$ such that $(B_1\setminus \{x\})\cup \{y\}$ is a $\mathrm{pp}$-independent generating set of $G$. In this paper we describe all finite solvable groups with property $\mathcal{B}_{pp}$ and all finite solvable groups with the $\mathrm{pp}$-basis exchange property.
Keywords: finite groups, independent sets, minimal generating sets, Burnside basis theorem.
@article{ADM_2020_29_1_a11,
     author = {A. Stocka},
     title = {Sets of prime power order generators of finite groups},
     journal = {Algebra and discrete mathematics},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a11/}
}
TY  - JOUR
AU  - A. Stocka
TI  - Sets of prime power order generators of finite groups
JO  - Algebra and discrete mathematics
PY  - 2020
SP  - 129
EP  - 138
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a11/
LA  - en
ID  - ADM_2020_29_1_a11
ER  - 
%0 Journal Article
%A A. Stocka
%T Sets of prime power order generators of finite groups
%J Algebra and discrete mathematics
%D 2020
%P 129-138
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a11/
%G en
%F ADM_2020_29_1_a11
A. Stocka. Sets of prime power order generators of finite groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 129-138. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a11/

[1] P. Apisa, B. Klopsch, “A generalization of the Burnside basis theorem”, J. Algebra, 400 (2014), 8–16 | DOI | MR | Zbl

[2] E. Detomi, A. Lucchini, M. Moscatiello, P. Spiga, G. Traustason, “Groups satisfying a strong complement property”, J. Algebra, 535 (2019), 35–52 | DOI | MR | Zbl

[3] K. Doerk, T. O. Hawkes, Finite Solvable Group, Walter de Gruyter, 1992 | MR

[4] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Company, New York, 1980 | MR | Zbl

[5] C. S. H. King, “Generation of finite simple groups by an involution and an element of prime order”, J. Algebra, 478 (2017), 153–173 | DOI | MR | Zbl

[6] J. Krempa, A. Stocka, “On some sets of generators of finite groups”, J. Algebra, 405 (2014), 122–134 | DOI | MR | Zbl

[7] J. Krempa, A. Stocka, “Addendum to: On sets of pp-generators of finite groups”, Bull. Aust. Math. Soc., 93 (2016), 350–352 | DOI | MR | Zbl

[8] J. McDougall-Bagnall, M. Quick, “Groups with the basis property”, J. Algebra, 346 (2011), 332–339 | DOI | MR | Zbl

[9] R. Scapellato, L. Verardi, “Groupes finis qui jouissent d'une propriété analogue au théorème des bases de Burnside.”, Boll. Unione Mat. Ital. A, 7:5 (1991), 187–194 | MR

[10] R. Scapellato, L. Verardi, “Bases of certain finite groups”, Ann. Math. Blaise Pascal, 1 (1994), 85–93 | DOI | MR | Zbl

[11] A. Stocka, “Finite groups with the pp-embedding property”, Rend. Sem. Mat. Univ. Padova, 141 (2019), 107–119 | DOI | MR | Zbl

[12] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976 | MR | Zbl