Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ADM_2020_29_1_a11, author = {A. Stocka}, title = {Sets of prime power order generators of finite groups}, journal = {Algebra and discrete mathematics}, pages = {129--138}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a11/} }
A. Stocka. Sets of prime power order generators of finite groups. Algebra and discrete mathematics, Tome 29 (2020) no. 1, pp. 129-138. http://geodesic.mathdoc.fr/item/ADM_2020_29_1_a11/
[1] P. Apisa, B. Klopsch, “A generalization of the Burnside basis theorem”, J. Algebra, 400 (2014), 8–16 | DOI | MR | Zbl
[2] E. Detomi, A. Lucchini, M. Moscatiello, P. Spiga, G. Traustason, “Groups satisfying a strong complement property”, J. Algebra, 535 (2019), 35–52 | DOI | MR | Zbl
[3] K. Doerk, T. O. Hawkes, Finite Solvable Group, Walter de Gruyter, 1992 | MR
[4] D. Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Company, New York, 1980 | MR | Zbl
[5] C. S. H. King, “Generation of finite simple groups by an involution and an element of prime order”, J. Algebra, 478 (2017), 153–173 | DOI | MR | Zbl
[6] J. Krempa, A. Stocka, “On some sets of generators of finite groups”, J. Algebra, 405 (2014), 122–134 | DOI | MR | Zbl
[7] J. Krempa, A. Stocka, “Addendum to: On sets of pp-generators of finite groups”, Bull. Aust. Math. Soc., 93 (2016), 350–352 | DOI | MR | Zbl
[8] J. McDougall-Bagnall, M. Quick, “Groups with the basis property”, J. Algebra, 346 (2011), 332–339 | DOI | MR | Zbl
[9] R. Scapellato, L. Verardi, “Groupes finis qui jouissent d'une propriété analogue au théorème des bases de Burnside.”, Boll. Unione Mat. Ital. A, 7:5 (1991), 187–194 | MR
[10] R. Scapellato, L. Verardi, “Bases of certain finite groups”, Ann. Math. Blaise Pascal, 1 (1994), 85–93 | DOI | MR | Zbl
[11] A. Stocka, “Finite groups with the pp-embedding property”, Rend. Sem. Mat. Univ. Padova, 141 (2019), 107–119 | DOI | MR | Zbl
[12] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976 | MR | Zbl